• 제목/요약/키워드: wave-by-wave method

검색결과 4,951건 처리시간 0.052초

생태계 제어구조물의 월파제어 특성 (Wave overtopping control by the use of ecosystem control structures)

  • 김현주;류청로
    • 한국해양공학회지
    • /
    • 제11권2호
    • /
    • pp.122-130
    • /
    • 1997
  • Coastal diaster induced by waves and countermeasures were investigated in the viewpoint of reduction of overtopping rate with enviroment in fishing port. The reduction method of wave overtopping rate using ecosystem control structures was proposed and studied on the efficiency by hydraulic and numerical experiments. The estimation models on wave overtopping rate was proposed after comparing previous models with dimensional analysis and experimental results. Control function o fwave overtopping by use of ecosystem controlstructures was simulated and discussed with combining wave shoaling-dissipation-breaking deformation model around ecosystem control structures and newly proposed calculation model for wave overtopping rate. Feasiblilty of ecosystem control structures could be confirmed for reduction of wave overtopping and fisheries-based multipurpose development of coastal zone.

  • PDF

A Study on the Unsteady Aerodynamics of Projectiles in Overtaking Blast Flowfields

  • ;;;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.409-414
    • /
    • 2011
  • A projectile that passes through a shock wave experiences drastic changes in the aerodynamic forces. These sudden changes in the forces are attributed to the wave structures produced by the projectile-shock wave interaction. A computational study using moving grid method is performed to analyze the effect of the projectile-shock wave interaction. Cylindrical and conical projectiles have been employed to study such interactions. This sort of unsteady interaction normally takes place in overtaking blast flow fields. It is found that the overall effect of overtaking a blast wave on the unsteady aerodynamic characteristics is hardly affected by the projectile configurations. However, it is noticed that the projectile configurations do affect the unsteady flow structures and hence the drag coefficient for the conical projectile shows considerable variation from that of the cylindrical projectile. The projectile aerodynamic characteristics, when it interacts with the secondary shock wave, are analyzed. It is also observed that the change in the characteristics of the secondary shock wave during the interaction is different for different projectile configurations.

  • PDF

A hydrodynamic model of nearshore waves and wave-induced currents

  • Sief, Ahmed Khaled;Kuroiwa, Masamitsu;Abualtayef, Mazen;Mase, Hajime;Matsubara, Yuhei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권3호
    • /
    • pp.216-224
    • /
    • 2011
  • In This study develops a quasi-three dimensional numerical model of wave driven coastal currents with accounting the effects of the wave-current interaction and the surface rollers. In the wave model, the current effects on wave breaking and energy dissipation are taken into account as well as the wave diffraction effect. The surface roller associated with wave breaking was modeled based on a modification of the equations by Dally and Brown (1995) and Larson and Kraus (2002). Furthermore, the quasi-three dimensional model, which based on Navier-Stokes equations, was modified in association with the surface roller effect, and solved using frictional step method. The model was validated by data sets obtained during experiments on the Large Scale Sediment Transport Facility (LSTF) basin and the Hazaki Oceanographical Research Station (HORS). Then, a model test against detached breakwater was carried out to investigate the performance of the model around coastal structures. Finally, the model was applied to Akasaki port to verify the hydrodynamics around coastal structures. Good agreements between computations and measurements were obtained with regard to the cross-shore variation in waves and currents in nearshore and surf zone.

Dispersion of Rayleigh Waves in the Korean Peninsula

  • ;이기화
    • 지구물리
    • /
    • 제9권3호
    • /
    • pp.231-240
    • /
    • 2006
  • The crustal structure of the Korean Peninsula was investigated by analyzing phase velocity dispersion data of Rayleigh waves. Earthquakes recorded by three component broad-band velocity seismographs during 1999-2004 in South Korea were used in this study. The fundamental mode Rayleigh waves were extracted from vertical components of seismograms by multiple filter technique and phase match filter method. Phase velocity dispersion curves of the fundamental mode signal pairs for 14 surface wave propagation paths on the great circle in the range 10 to 80 sec were computed by two-station method. Treating the shear velocity of each layer as an independent parameter, phase velocity data of Rayleigh wave were inverted. All the result models can be explained by a rather homogeneous crust of shear-wave velocity increasing from 2.8 to 3.25 km/sec from top to about 33 km depth without any distinctive crustal discontinuities and an uppermost mantle of shear-wave velocity between 4.55 and 4.67 km/sec. Our results turn out to agree well with recent study of Cho et al. (2006 b) based on the analysis of seismic background noises to recover short-period (0.5-20 sec) Rayleigh- and Love-wave group velocity dispersion characteristics.

  • PDF

Multi-wavelength Observations of Two Explosive Events and Their Effects on the Solar Atmosphere

  • Admiranto, Agustinus G.;Priyatikanto, Rhorom
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권3호
    • /
    • pp.197-205
    • /
    • 2016
  • We investigated two flares in the solar atmosphere that occurred on June 3, 2012 and July 6, 2012 and caused propagation of Moreton and EIT waves. In the June 3 event, we noticed a filament winking which presumably was caused by the wave propagation from the flare. An interesting feature of this event is that there was a reflection of this wave by a coronal hole located alongside the wave propagation, but not all of this wave was transmitted by the coronal hole. Using the running difference method, we calculated the speed of Moreton and EIT waves and we found values of 926 km/s before the reflection and 276 km/s after the reflection (Moreton wave) and 1,127 km/s before the reflection and 46 km/s after the reflection (EIT wave). In the July 6 event, this phenomenon was accompanied by type II and type III solar radio bursts, and we also performed a running difference analysis to find the speed of the Moreton wave, obtaining a value of 988 km/s. The speed derived from the analysis of the solar radio burst was 1,200 km/s, and we assume that this difference was caused by the different nature of the motions in these phenomena, where the solar radio burst was caused by the propagating particles, not waves.

Numerical simulation of wave interacting with a free rolling body

  • Jung, Jae Hwan;Yoon, Hyun Sik;Chun, Ho Hwan;Lee, Inwon;Park, Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권3호
    • /
    • pp.333-347
    • /
    • 2013
  • The present study numerically models the interaction between a regular wave and the roll motion of a rectangular floating structure. In order to simulate two-dimensional incompressible viscous two-phase flow in a numerical wave tank with the rectangular floating structure, the present study used the volume of fluid method based on the finite volume method. The sliding mesh technique is adopted to handle the motion of the rectangular floating structure induced by fluid-structure interaction. The effect of the wave period on the flow, roll motion and forces acting on the structure is examined by considering three different wave periods. The time variations of the wave height and the roll motion of the rectangular structure are in good agreement with experimental results for all wave periods. The present response amplitude operator is in good agreement with experimental results with the linear potential theory. The present numerical results effectively represent the entire process of vortex generation and evolution described by the experimental results. The longer wave period showed a different mechanism of the vortex evolution near each bottom corner of the structure compared to cases of shorter wave periods. In addition, the x-directional and z-directional forces acting on the structure are analyzed.

고립파의 수직 벽면 반사와 Stokes 감쇠에 관한 개선된 부시네스크 방정식을 이용한 수치해석 연구 (Numerical Study on the Reflection of a Solitary Wave by a Vertical Wall Using the Improved Boussinesq Equation with Stokes Damping)

  • 박진수;장택수
    • 대한조선학회논문집
    • /
    • 제59권2호
    • /
    • pp.64-71
    • /
    • 2022
  • In this paper, we simulate the collision of a solitary wave on a vertical wall in a uniform water channel and investigate the effect of damping on the amplitude attenuation. In order to take into account the damping effect, we introduce the Stokes damping whose dissipation is dependent on the velocity of wave motion on the surface of a thin layer of oil. That is, we use the improved Boussinesq equation with Stokes damping to describe the damped wave motion. Our work mainly focuses on the amplitude attenuation of a propagating solitary wave, which may depend on the Stokes damping together with the initial position and initial amplitude of the wave. We utilize the method of images and a powerful numerical tool (functional iteration method) for solving the improved Boussinesq equation, yielding an effective numerical simulation. This enables us to find the amplitudes of the incident wave and reflected one, whose ratio is a measure of the (wave) amplitude attenuation. Accordingly, we have shown that the reflection of a solitary wave by a vertical wall is dependent on not only the initial amplitude and position of a solitary but the Stokes damping.

2차원 익형의 자유수면 효과에 관한 연구 (A Study on Free Surface Effect of 2-D Airfoils)

  • 박일룡;전호환
    • 한국해양공학회지
    • /
    • 제9권2호
    • /
    • pp.75-82
    • /
    • 1995
  • The free surface effects on the aerodynamic performance of 2-D wings are investigated based on the potential flow approximation. The wing is represented b source and vortex distributions on the wing surface. The steady free surface effect is taken into account by source distribution on the free surface and the velocity potentials of air and water flows are obtained. Using three different techniques, namely, positive image method, inverse image method and source distribution method, numerical results are obtained for wave elevation, pressure distribution and lift coefficient with various foil sections. The wave elevation calculated by the inverse image method is shown to be very small even at higher speeds so that the free surface effect on the performance of wings is regraded negligible. However, the wave elevations by the positive image method and source distribution method are relatively high at higher speeds and accordingly the free surface effects on wings can not be neglected.

  • PDF

심전도 기저선 변동의 최소화방법에 관한 연구 (A Study on a Minimizing Method of Baseline Wandering in ECG)

  • 주장규;김민규;이기영;김정국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.48-50
    • /
    • 2006
  • In this paper, we propose a method to minimize the baseline wandering that make hard to detect R wave in ECG. This method uses a different signal between ECG and ascending slope tracing waves to minimize the baseline wandering. When the slope of ECG signal maintains the value or falls, the ascending slope tracing wave fellows ECG signal directly, and this wave holds that value of ECG signal when the slope begins to rises in a certain time(=hold time). After this hold time, this wave traces ECG signal again. To evaluate this minimizing method for baseline wandering, the experiments are carried out with 5 ECG data in the database of MIT/BIH. R waves in the proposed different signal are detected by using descending slope trace waves and compared with the annotation file. The results show that the proposed method Is sure to minimize the baseline wandering in ECG.

  • PDF

Expected Overtopping P개bability Considering Real Tide Occurrence

  • Kweonl, Hyuck-Min;Lee, Young-Yeol;Oh, Young-Min
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.479-483
    • /
    • 2004
  • A new calculation method of expected overtopping probability of rubble mound breakwater considering real tide occurrence has been proposed. A calculation method of expected overtopping probability of rubble mound breakwater was proposed by Kweon and Suh (2003). In their calculation, the fluctuation of tidal elevation was expressed by the sinusoidal change that yields the uniform distribution of occurrence frequency. However, the realistic distribution of tidal elevation should influence on the overtopping chance. In this study, the occurrence frequency of tidal elevation obtained from the real sea is included. The tidal elevation used in this study is collected from the east coastal part of Korean peninsular. Analyzing the annual data of the tidal fluctuation measured hourly during 355 days, the distribution of occurrence frequency is formulated utilizing by the normal distribution with one peak. Among the calculation procedures of annual maximum wave height, wave height-period joint distribution, wave run-up height and occurrence frequency of tide, only the annual maximum wave height is again chosen randomly from normal distribution to consider the uncertainty. The others are treated by utilizing the distribution function or relationship itself, It is found that the inclusion of the variability of tidal elevation has great influence on the computation of the expected overtopping probability of rubble mound breakwater. The bigger standard deviation of occurrence frequency is, the lower the overtopping probability of rubble mound breakwater is.

  • PDF