• Title/Summary/Keyword: wave-by-wave method

Search Result 4,931, Processing Time 0.037 seconds

Optimal Wave Source Position Determination Based on Wave Propagation Simulation (전자파 영향 평가를 통한 최적의 전파 기지국 위치 결정 방법)

  • 박성헌;박지헌
    • Korean Management Science Review
    • /
    • v.18 no.1
    • /
    • pp.41-54
    • /
    • 2001
  • In this paper, we proposed a method to determine optimal wave source for mobile telephone communication. The approach is based on wave propagation simulation. Given a wave source we can determine wave propagation effects on every surfaces of wave simulation environment. The effect is evaluated as a cost function while the source’s position x, y, z work as variables for a parameter optimization. Wave propagated 3 dimensional space generates reflected waves whenever it hits boundary surface, it receives multiple waves which are reflected from various boundary surfacers in space. Three algorithms being implemented in this paper are based on a raytracing theory. If we get 3 dimensional geometry input as well as wave sources, we can compute wave propagation effects all over the boundary surfaces. In this paper, we present a new approach to compute wave propagation. First approach is tracing wave from a source. Source is modeled as a sphere casting vectors into various directions. This approach has limit in computing necessary wave propagation effects on all terrain surfaces. The second approach proposed is tracing wave backwards : tracing from a wave receiver to a wave source. For this approach we need to allocate a wave receiver on every terrain surfaces modeled, which requires enormous amount of computing time. But the second approach is useful for indoor wave propagation simulation. The last approach proposed in this paper is tracing sound by geometric computation. We allow direct, 1-relfe tion, and 2-reflection propagation. This approach allow us to save in computation time while achieving reasonable results. but due to the reflection limitaion, this approach works best in outdoor environment.

  • PDF

Analysis of the Long-term Wave Characteristics off the Coast of Daejin (대진 연안의 장기 파랑 특성 분석)

  • Jeong, Weon Mu;Cho, Hongyeon;Baek, Wondae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.2
    • /
    • pp.142-147
    • /
    • 2015
  • Wave data acquired over seven years near Daejin Harbor located in the north central area of the east coast was analyzed using spectral method and wave-by-wave analysis method and its major wave characteristics were examined. Significant wave heights were found to be high in winter and low in summer, and peak periods were also found to be long in winter and short in summer. The maximum significant wave height observed was 6.59 m and was caused by Typhoon No. 1216, SANBA. The distributional pattern of the significant wave heights and peak periods were both reproduced better by Kernel distribution function than by Generalized Gamma distribution function and Generalized Extreme Value distribution function. Meanwhile, the wave data was subdivided by month and wave height level and the cumulative appearance rate was proposed to aid designing and constructing works in nearby coastal areas.

A Study on S-wave Reflection method for the assessment of physical property of dam body (댐체 물성 평가를 위한 S파 반사법에 관한 연구)

  • Kim, Hyoung-Soo;Kim, Jung-Yul;Ha, Ik-Soo;Kim, Yoo-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.392-399
    • /
    • 2005
  • Shear modulus (or rigidity) of dam material is an important parameter which can be directly associated with the deformation of dam. Seepage or leakage of water can cause the defects or cracks of dam body. The existence of cracks and rigidity of dam body are decisive information for the estimation of dam safety. Rigidity of material is mainly determined from S-wave velocity and the defects of dam body can be detected by seismic reflection survey. Therefore, seismic reflection survey will be a desirable method which can give a solution about dam safety problem. Among various physical properties of dam body, S-wave velocity is the most important information but it is not easy to get the information. In this study, diverse measuring techniques of S-wave reflection survey were attempted to get the information about S-wave velocity of dam body. Ultimately, S-wave velocity could be estimated by the analysis of SH reflection events which can be easily observed in shot gather data obtained from SH measuring technique. Meanwhile, P-wave reflection survey was also performed at the same profile. P-beam radiation technique which can reduce the surface waves and reinforce the P-wave reflection events was applied for giving a help to analyse P-wave velocity. In the end, P-and S-wave velocity, Vs/Vp, Poisson's ratio distribution of the vertical section under the profile could be acquired.

  • PDF

Numerical Simulation of Irradiance Scintillation through a Gaussian Random Medium (가우시안 랜덤매질을 통과한 광도변동의 시뮬레이션)

  • Jeong Ki Pack
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.11
    • /
    • pp.40-48
    • /
    • 1992
  • The wave-kinetic numerical method is used in simulating the irradiance scintillations of optical wave through a two-dimensional random medium containing weak Gaussian fluctuations of the refractive index. The results are compared to existing analytical or numerical results. The wave-kinetic method is a phase-space ray-tracing method for certain key ray trajectories, and the irradiance is calculated by reconstructing the entire beam from these trajectories. The strength of the wave-kinetic method lies in the fact that it can be applied to any type of random media.

  • PDF

Computational study of the wave propagation in three-dimensional human cardiac tissue

  • Kwon, Soon-Sung;Im, Uk-Bin;Kim, Ki-Woong;Lee, Yong-Ho;Shim, Eun-Bo
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.3 no.1
    • /
    • pp.23-29
    • /
    • 2005
  • We developed a three dimensional cardiac tissue model based on human cardiac cell and mono-domain approximation for action potential propagation. The human myocyte model proposed by ten Tusscher et al. (TNNP model) (2004) for cell electrophysiology and a mono-domain method for electric wave propagation are used to simulate the cardiac tissue propagation mechanism using a finite element method. To delineate non-homogeneity across cardiac tissue layer, we used three types of cardiac cell models. Ansiotropic effect of action potential propagation is also considered in this study. In this 3D anisotropic cardiac tissue with three cell layers, we generated a reentrant wave using S1-S2 protocol. Computational results showed that the reentrant wave was affected by the anisotropic properties of the cells. To test the reentrant wave under pathological state, we simulated a hypertopic model with non-excitable fibroblasts in stochastic manner. Compared with normal tissue, the hypertropic tissue result showed another center of reentrant wave, indicating that the wave pattern can be more easily changed from regular with a concentric focus to irregular multi-focused reentrant waves in case of patients with hypertrophy.

  • PDF

Internal Wave-Maker using Momentum Source Term of RANS Equation Model (RANS 방정식의 운동량 원천항을 이용한 내부조파)

  • Choi, Jun-Woo;Ko, Kwang-Oh;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.182-190
    • /
    • 2009
  • For RANS equation model using VOF scheme Lin and Liu (1999) developed internal wave-maker method to generate target wave trains by using designed mass source functions of the continuity equation. By using this method studies on various numerical wave experiments has been achieved without the problem caused by wave reflection due to an external wave-maker. In this study, the wave-maker method to generate target wave trains by using a momentum source function was proposed. The computational results obtained by applying the mass and momentum source functions into FLUENT were compared with each other. To see its applicability, the hydraulic experiment of Luth et al. (1994) were numerically simulated and their measurements are compared with the computations, and the vertical variations of computed results were shown and investigated.

Dynamic responses of a freestanding bridge tower under wave and wave-current loads

  • Wei, Chengxun;Wang, Wenjing;Zhou, Daocheng
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.491-502
    • /
    • 2022
  • A model experiment with a scale of 1:150 has been conducted to investigate the dynamic responses of a freestanding four-column bridge tower subjected to regular wave, random wave and coupled wave-current actions. The base shear forces of the caisson foundation and the dynamic behaviors of the superstructure were measured and analyzed. The comparisons of the test values with the theoretical values shows that wave-induced base shear forces on the bridge caisson foundation can be approximated by using a wave force calculation method in which the structure is assumed to be fixed and rigid. Although the mean square errors of the base shear forces excited by joint random wave and current actions are approximately equal to those excited by pure random waves, the existence of a forward current increases the forward base shear forces and decreases the backward base shear forces. The tower top displacements excited by wave-currents are similar to those excited by waves, suggesting that a current does not significantly affect the dynamic responses of the superstructure of the bridge tower. The experiment results can be used as a reference for similar engineering design.

Development and verification of a combined method of BEM and VOF (BEM과 VOF법을 결합한 수치모델의 개발과 그 타당성 검토)

  • Kim Sang-Ho;Yannshiro Masaru;Yoshida Akinori;Hashimoto Noriaki;Lee Jong-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.153-159
    • /
    • 2005
  • Recently, various novel numerical models based on Navier-Stokes equation rave been developed for calculating wave motions in the sea with coastal or ocean structures. Among those models, Volume Of Fluid (VOF) method might be the most popular one, and it has been used for numerical simulations of wave motions including complicated phenomena of wave breakings. VOF method, however, needs enormous computation time and large computational storage memories in general, thus it is practically difficult to use VOF method for calculations in the case of random waves because long and stable computation ( e.g. for more than 100 significant wave periods) is required to obtain statistically meaningful results. On the other hand of the wave motion is potential motion, Boundary Element Method (BEM), which is a much faster and more accurate method than VOF method, am be effectively used. The aim of this study is to develop a new efficient model applicable to calculations of wave motion and/or wave-structure interactions under random waves. To achieve this, a strictly combined BEM-VOF model has been developed by making the best use of both methods' merits; VOF method is used in a restricted fluid domain around a structure where complicated phenomena of wave breakings may exist, and BEM is used in the other domains far from the disturbance where the wave motion may be assumed to be potential. The verification of the model was performed with numerical results for Stokes'5th order wave propagation and a random wave propagation.

  • PDF

Wave Spectrum Based Fatigue Analysis for Mediterranean Sea, Black Sea and Aegean Sea

  • Kabakcioglu, Fuat;Bayraktarkatal, Ertekin
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.2
    • /
    • pp.61-67
    • /
    • 2013
  • In this study, wave spectrum based fatigue analyses are studied for Turkey's adjacent coastal seas by using Maestro finite element analyzing software. Palmgren-Miner's method is used to obtain the fatigue safe life time. Palmgren-Miner's method was selected for the fatigue analyses because of its good acceptance of data from almost all classification societies such as Germanischer Lloyd, the American Bureau of Shipping, Det Norske Veritas, etc. The maximum stress regions of the structures are obtained by using finite element analyses, and the results are compared with the endurance limit of the W$\ddot{o}$hler diagram of AA5059 H321 aluminum alloy. The wave characteristics table given in this article is used to obtain the number of cycles for each sea condition. By using the wave characteristics table, the wave lengths, wave speeds, and cycles are obtained. This study is performed to estimate the lifetimes of a semi-swath type coast guard boat and/or commercial yacht projects, which are produced by using AA5059 H321 aluminum alloy, under different sea environment conditions. Fatigue examinations are performed for both head seas and oblique seas.

Theoretical Analysis of Wave Energy Converter

  • Oh, Jin-Seok;Komatsu, Toshimitsu;Kim, Yun-Hyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.169-174
    • /
    • 2008
  • Floating devices, such as a cavity resonance device take advantage of both the water motion and the wave induced motions of the floating body itself. The wave energy converter is known commercially as the WAGB(Wave Activated Generator Buoy) and is used in some commercially available buoys to power navigation aids such as lights and horns. This wave energy converter consists of a circular floatation body which contains a vertical center pipe that has free communication with the sea. A theoretical analysis of this power generated by a pneumatic type wave energy converter is performed and the results obtained from the analysis are used for a real wave energy converter for buoy. This paper presents the analysis results and the design method for the WEC(Wave Energy Converter), and the associate results are application to the commercially available WEC for buoy. Maximum performance of WEC occurs at resonance with driving waves. The analysis of WEC is performed with LabVIEW program, and the design method of WEC for buoy is suggested in this paper.