• Title/Summary/Keyword: wave refraction

Search Result 206, Processing Time 0.023 seconds

Numerical Simulation of Irregular Wave Transformation due to Wave-induced Current over a Submerged Elliptic Shoal (수중타원형 천퇴상 불규칙파의 파랑쇄파류에 의한 변형 수치모의)

  • Choi, Jun-Woo;Baek, Un-Il;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.565-573
    • /
    • 2007
  • The effect of wave and current interactions on irregular wave transformation over a submerged elliptic shoal is investigated based on numerical simulations of the Vincent and Briggs experiment [Vincent, C.L., Briggs, M.J., 1989. Refraction-diffraction of irregular waves over a mound. Journal of Waterway, Port, Coastal and Ocean Engineering, 115(2), pp. 269-284]. The numerical simulations are conducted by a combination of REF/DIF S(a wave model) and SHORECIRC(a current model) and a time dependent phase-resolving wavecurrent model, FUNWAVE. In the simulations, the breaking-induced currents defocus waves behind the shoal and bring on a wave shadow zone that shows relatively low wave height distributions. The computed results of the combined model system agree better with the measurements than the computed results obtained by neglecting wave-current interaction do. In addition, the results of FUNWAVE show a good agreement with the measurements. The agreement indicates that it is necessary to take into account the effect of breaking-induced current on wave refraction when wave-breaking occurs over a submerged shoal.

Application of linear-array microtremor surveys for rock mass classification in urban tunnel design (도심지 터널 암반분류를 위한 선형배열 상시진동 탄성파 탐사 적용)

  • Cha, Young-Ho;Kang, Jong-Suk;Jo, Churl-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.108-113
    • /
    • 2006
  • Urban conditions, such as existing underground facilities and ambient noise due to cultural activity, restrict the general application of conventional geophysical techniques. At a tunnelling site in an urban area along an existing railroad, we used the refraction microtremor (REMI) technique (Louie, 2001) as an alternative way to get geotechnical information. The REMI method uses ambient noise recorded by standard refraction equipment and a linear geophone array to derive a shear-wave velocity profile. In the inversion procedure, the Rayleigh wave dispersion curve is picked from a wavefield transformation, and iteratively modelled to get the S-wave velocity structure. The REMI survey was carried out along the line of the planned railway tunnel. At this site vibrations from trains and cars provided strong seismic sources that allowed REMI to be very effective. The objective of the survey was to evaluate the rock mass rating (RMR), using shear-wave velocity information from REMI. First, the relation between uniaxial compressive strength, which is a component of the RMR, and shear-wave velocity from laboratory tests was studied to learn whether shear-wave velocity and RMR are closely related. Then Suspension PS (SPS) logging was performed in selected boreholes along the profile, in order to draw out the quantitative relation between the shear-wave velocity from SPS logging and the RMR determined from inspection of core from the same boreholes. In these tests, shear-wave velocity showed fairly good correlation with RMR. A good relation between shear-wave velocity from REMI and RMR could be obtained, so it is possible to estimate the RMR of the entire profile for use in design of the underground tunnel.

TIME-DEPENDENT WAVE EQUATIONS ON BOTTOM WITH SUBSTANTIAL DEPTH VARIATION

  • Suh, Kyung-Duck;Lee, Changhoon
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.75-80
    • /
    • 1995
  • The model for the combined refraction and diffraction of water waves, the so-called mild-slope equation, was first developed by Berkhoff (1972) and has been studied by many coastal engineers because the model is able to consider the combined effect of refraction and diffraction of water waves and eliminate the problem of ray crossing which may happen in the previously developed ray theory. (omitted)

  • PDF

Prediction of Electromagnetic Wave Propagation in Space Environments Based on Geometrical Optics

  • Kim, Changseong;Park, Yong Bae
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.165-167
    • /
    • 2017
  • We predict the electromagnetic wave propagation in space environments using geometrical optics. The effective indices of the troposphere, stratosphere, and ionosphere are computed, and the reflection, refraction, and attenuation of electromagnetic waves in space environments are calculated based on the ray tracing technique and geometrical optics. The influence of the refractive index and loss of atmosphere and the incident angle of the antenna on electromagnetic wave propagation is discussed.

Internal Generation of Waves on an Arc In A Rectangular Grid System (직사각형 격자체계에서의 원호형 내부조파)

  • Lee Chang-Hoon;Choi Hyuk-Jin;Kim Duk-Gu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.1
    • /
    • pp.1-14
    • /
    • 2006
  • This paper presents the techniques developed using the line source method to internally generate waves on an arc in a rectangular grid system. For five different types of wave generation layouts, quantitative experiments were conducted under the following conditions: the propagation of waves on a flat bottom, the refraction and shoaling of waves on a planar slope, and the diffraction of waves to a semi-infinite breakwater. Numerical experiments were conducted using the extended mild-slope equations of Suh et al. (1997). The fifth type of wave generation layout, consisting of two parallel lines connected to a semicircle, showed the best solutions, especially for a small grid size.

Time-Delay and Amplitude Modified BP Imaging Algorithm of Multiple Targets for UWB Through-the-Wall Radar Imaging

  • Zhang, Huamei;Li, Dongdong;Zhao, Jinlong;Wang, Haitao
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.677-688
    • /
    • 2017
  • In order to solve the undetected probability of multiple targets in ultra-wideband (UWB) through-the-wall radar imaging (TWRI), a time-delay and amplitude modified back projection (BP) algorithm is proposed. The refraction point is found by Fermat's principle in the presence of a wall, and the time-delay is correctly compensated. On this basis, transmission loss of the electromagnetic wave, the absorption loss of the refraction wave, and the diffusion loss of the spherical wave are analyzed in detail. Amplitude compensation is deduced and tested on a model with a single-layer wall. The simulating results by finite difference time domain (FDTD) show that it is effective in increasing the scattering intensity of the targets behind the wall. Compensation for the diffusion loss in the spherical wave also plays a main role. Additionally, the two-layer wall model is simulated. Then, the calculating time and the imaging quality are compared between a single-layer wall model and a two-layer wall model. The results illustrate the performance of the time-delay and amplitude-modified BP algorithm with multiple targets and multiple-layer walls of UWB TWRI.

Application of linear array microtremor survey for rock mass classification in urban tunnel design (도심지 터널 암반분류를 위한 선형배열 상시진동 탄성파탐사 적용)

  • Cha Young Ho;Kang Jong Suk;Jo Churl Hyun;Lee Kun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.157-164
    • /
    • 2005
  • Urban conditions such as underground facilities and ambient noises due to cultural activity restrict the application of conventional geophysical techniques in general. We used the refraction microtremor (REMI) technique as an alternative way to get the geotechnical information, in particular shear-wave (S-wave) velocity information, at a site along an existing rail road. The REMI method uses ambient noises recorded using standard refraction equipment to derived shear-wave velocity information at a site. It does a wavefield transformation on the recorded wavefield to produce Rayleigh wave dispersion curve, which are then picked and modeled to get the shear-wave velocity structure. At this site the vibrations from the running trains provided strong noise sources that allowed REMI to be very effective. REMI was performed along the planned new underground rail tunnel. In addition, Suspension PS logging (SPS) were carried out at selected boreholes along the profile in order to draw out the quantitative relation between the shear wave velocity from the PS logging and the rock mass rating (RMR) determined from the inspection of the cores recovered from the same boreholes, These correlations were then used to relate the shear-wave velocity derived from REMI to RMR along the entire profile. The correlation between shear wave velocity and RMR was very good and so it was possible to estimate the RMR of the total zone of interest for the design of underground tunnel,

  • PDF

Shallow Marine Seismic Refraction Data Acquisition and Interpretation Using digital Technique (디지털 技法을 이용한 淺海底 屈折法 彈性波 探査資料의 取得과 解析)

  • 이호영;김철민
    • 한국해양학회지
    • /
    • v.27 no.1
    • /
    • pp.19-34
    • /
    • 1992
  • Marine seismic refraction surveys have been carried out by Korea Institute of Geology, Mining and Materials(KIGAM) since 1984. The recording of refraction data was based on analog instrumentation. Therefore the resolution of refraction data was not good enough to distinguish many layers. The objective of the interpretation of seismic refraction data is the determination of intervals and critically refracted seismic wave propagation velocities through the layers beneath the sea floor. To determine intervals and velocities precisely, the resolution of refraction data should be enhanced. The intent of the study is to improve the quality of shallow marine refraction data by the digital technique using microcomputer- based acquisition and processing system. The system consists of an IBM AT microcomputer clone, an analog-digital(A/D) converter. A mass storage unit and a parallel processing board. The A/D converter has 12 bits of precision and 250 kHz of conversion rate. The magneto-optical disk drive is used for the mass storage of seismic refraction data. Shallow marine seismic refraction surveys have been carried out using the system at 6 locations off Ulsan and Pusan area. The refraction data were acquired by the radio sonobuoy. The refraction profiles have been produced by the laser printer with 300 dpi resolution after the basic computer processing. 5-9 layers were interpreted from digital refraction profiles, whereas 2-4 layers were interpreted from analog refraction profiles. the propagation velocities of sediments were interpreted as 1.6-2.1 km/sec. The propagation velocities of acoustic basement were interpreted as 2.4-2.7 km/sec off Ulsan area, 4.8 km/sec off Pusan area.

  • PDF

Estimation of Harbor Responses due to Construction of a New Port in Ulsan Bay

  • Lee, Joong-Woo;Lee, Hoon;Lee, Hak-Seung;Jeon, Min-Su
    • Journal of Navigation and Port Research
    • /
    • v.28 no.7
    • /
    • pp.619-627
    • /
    • 2004
  • Introduction of wave model, considered the effect of shoaling, refraction, diffraction, partial reflection, bottom friction, breaking at the coastal waters of complex bathymetry, is a very important factor for most coastal engineering design and disaster prevention problems. As waves move from deeper waters to shallow coastal waters, the fundamental wave parameters will change and the wave energy is redistributed along wave crests due to the depth variation, the presence of islands, coastal protection structures, irregularities of the enclosing shore boundaries, and other geological features. Moreover, waves undergo severe change inside the surf zone where wave breaking occurs and in the regions where reflected waves from coastline and structural boundaries interact with the incident waves. Therefore, the application of mild-slope equation model in this field would help for understanding of wave transformation mechanism where many other models could not deal with up to now. The purpose of this study is to form a extended mild-slope equation wave model and make comparison and analysis on variation of harbor responses in the vicinities of Ulsan Harbor and Ulsan New Port, etc. due to construction of New Port in Ulsan Bay. We also considered the increase of water depth at the entrance channel by dredging work up to 15 meters depth in order to see the dredging effect. Among several model analyses, the nonlinear and breaking wave conditions are showed the most applicable results. This type of trial might be a milestone for port development in macro scale, where the induced impact analysis in the existing port due to the development could be easily neglected.

Efficient calculation method of derivative of traveltime using SWEET algorithm for refraction tomography

  • Choi, Yun-Seok;Shin, Chang-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.402-409
    • /
    • 2003
  • Inversion of traveltime requires an efficient algorithm for computing the traveltime as well as its $Frech\hat{e}t$ derivative. We compute the traveltime of the head waves using the damped wave solution in the Laplace domain and then present a new algorithm for calculating the $Frech\hat{e}t$ derivative of the head wave traveltimes by exploiting the numerical structure of the finite element method, the modem sparse matrix technology, and SWEET algorithm developed recently. Then, we use a properly regularized steepest descent method to invert the traveltime of the Marmousi-2 model. Through our numerical tests, we will demonstrate that the refraction tomography with large aperture data can be used to construct the initial velocity model for the prestack depth migration.

  • PDF