• 제목/요약/키워드: wave propagation analysis

검색결과 697건 처리시간 0.026초

표면파기법을 이용한 지반강성평가시 수평성분파의 적용성 평가 (Assessment for Application of Horizontal Component Wave applied to Surface Wave Method for Ground stiffness Investigation)

  • 이일화;조성호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.697-700
    • /
    • 2003
  • The SASW method is a promising and effective way of profiling ground stiffness nondestructively. This method has been successfully applied to many geotechnical sites, but significant lateral variability, embedded obstacles, and pavement lead to the low reliability. To improve these problems, the horizontal wave component has been introduced to improve the reliability of the stiffness profile determined by the SASW method. To understand dispersion character of the horizontal component wave propagation in artificial profiles, FEM analysis had been performed. Used models are homogeneous half-space and two layered half- spaced layers.

  • PDF

Dispersion of shear wave in a pre-stressed hetrogeneous orthotropic layer over a pre-stressed anisotropic porous half-space with self-weight

  • Kakar, Rajneesh;Kakar, Shikha
    • Structural Engineering and Mechanics
    • /
    • 제59권6호
    • /
    • pp.951-972
    • /
    • 2016
  • The purpose of this study is to illustrate the propagation of the shear waves (SH-waves) in a prestressed hetrogeneous orthotropic media overlying a pre-stressed anisotropic porous half-space with self weight. It is considered that the compressive initial stress, mass density and moduli of rigidity of the upper layer are space dependent. The proposed model is solved to obtain the different dispersion relations for the SH-wave in the elastic-porous medium of different properties. The effects of compressive and tensile stresses along with the heterogeneity, porosity, Biot's gravity parameter on the dispersion of SH-wave are shown numerically. The wave analysis further indicates that the technical parameters of upper and lower half-space affect the wave velocity significantly. The results may be useful to understand the nature of seismic wave propagation in geophysical applications and in the field of earthquake and material science engineering.

유체 충진 탄성호스 내의 길이 방향 파동 전파속도에 관한 실험적 규명 (Experimental Identification of the Longitudinal Wave Propagation Speed in Fluid-filled Elastic Hose)

  • 권오조;조치영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.804-810
    • /
    • 2000
  • In this paper, an experimental identification method is presented to identify the bulge wave and extensional wave propagation speeds in the fluid-filled elastic hose. An fluid-filled hose is hanged vertically for straight position. The exciting device of piston type is developed to generate the bulge wave and extensional wave in the elastic hose. Hydrophones are arranged in the fluid-filled hose linearly to measure the wave pressure. The wave speeds are estimated using the wavenumber-frequency spectrum analysis technique.

  • PDF

On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model

  • Karami, Behrouz;Janghorban, Maziar;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제69권5호
    • /
    • pp.487-497
    • /
    • 2019
  • Rapid advances in the engineering applications can bring further areas to provide the opportunity to manipulate anisotropic structures for direct productivity in design of micro/nano-structures. For the first time, magnetic affected wave characteristics of nanosize plates made of anisotropic material is investigated via the three-dimensional bi-Helmholtz nonlocal strain gradient theory. Three small scale parameters are used to predict the size-dependent behavior of the nanoplates more accurately. After owing governing equations of wave motion, an analytical approach based harmonic series is utilized to fine the wave frequency as well as phase velocity. It is observed that the small scale parameters, magnetic field and wave number have considerable influence on the wave characteristics of anisotropic nanoplates. Due to the lack of any study on the mechanics of three-dimensional bi-Helmholtz gradient plates made of anisotropic materials, it is hoped that the present exact model may be used as a benchmark for future works of such nanostructures.

대칭 적층 복합재 연소관의 탄성파 전파에 관한 실험적 연구 (An Experimental Study on Elastic Wave Propagation in a Symmetrically Filament-Wound Composite Motor Case)

  • 송성진;최지웅
    • 비파괴검사학회지
    • /
    • 제18권3호
    • /
    • pp.191-204
    • /
    • 1998
  • 복합재 연소관의 수압/AE 시험의 성공적 수행을 위한 핵심 과제중의 하나는 수압으로 인해 방출되어 연소관을 통해 전파하는 탄성파의 특성을 분석함으로써 수압/AE 시험시 감지해야할 탄성파의 최적 성분을 결정하는 것이다. 이러한 문제를 해결하기 위해 본 연구에서는 대칭 적층 구조를 갖는 복합재 연소관에 광대역 초음파를 발진시키고 전파방항과 거리를 변화시킨 105지점에서 광대역 음향방출 센서를 이용하여 복합재 내를 전파한 탄성파를 수신하고, 그 특성(주파수, 전파거리, 전파속도)을 분석하였다. 이와 같은 실험을 내부가 비어 있는 연소관과 내부를 물로 채우고 수압을 가한 연소관에 대해 반복 수행함으로써, 수압이 탄성파의 전파특성에 미치는 영향을 분석하고, 이를 바탕으로 수압/AE 시험시 검출할 탄성파의 최적 성분을 결정하였다.

  • PDF

Wave propagation simulation and its wavelet package analysis for debonding detection of circular CFST members

  • Xu, Bin;Chen, Hongbing;Xia, Song
    • Smart Structures and Systems
    • /
    • 제19권2호
    • /
    • pp.181-194
    • /
    • 2017
  • In order to investigate the interface debonding defects detection mechanism between steel tube and concrete core of concrete-filled steel tubes (CFSTs), multi-physical fields coupling finite element models constituted of a surface mounted Piezoceramic Lead Zirconate Titanate (PZT) actuator, an embedded PZT sensor and a circular cross section of CFST column are established. The stress wave initiation and propagation induced by the PZT actuator under sinusoidal and sweep frequency excitations are simulated with a two dimensional (2D) plain strain analysis and the difference of stress wave fields close to the interface debonding defect and within the cross section of the CFST members without and with debonding defects are compared in time domain. The linearity and stability of the embedded PZT response under sinusoidal signals with different frequencies and amplitudes are validated. The relationship between the amplitudes of stress wave and the measurement distances in a healthy CFST cross section is also studied. Meanwhile, the responses of PZT sensor under both sinusoidal and sweep frequency excitations are compared and the influence of debonding defect depth and length on the output voltage is also illustrated. The results show the output voltage signal amplitude and head wave arriving time are affected significantly by debonding defects. Moreover, the measurement of PZT sensor is sensitive to the initiation of interface debonding defects. Furthermore, wavelet packet analysis on the voltage signal under sweep frequency excitations is carried out and a normalized wavelet packet energy index (NWPEI) is defined to identify the interfacial debonding. The value of NWPEI attenuates with the increase in the dimension of debonding defects. The results help understand the debonding defects detection mechanism for circular CFST members with PZT technique.

Preliminary numerical study on long-wavelength wave propagation in a jointed rock mass

  • Chong, Song-Hun;Kim, Ji-Won;Cho, Gye-Chun;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • 제21권3호
    • /
    • pp.227-236
    • /
    • 2020
  • Non-destructive exploration using elastic waves has been widely used to characterize rock mass properties. Wave propagation in jointed rock masses is significantly governed by the characteristics and orientation of discontinuities. The relationship between spatial heterogeneity (i.e., joint spacing) and wavelength for elastic waves propagating through jointed rock masses have been investigated previously. Discontinuous rock masses can be considered as an equivalent continuum material when the wavelength of the propagating elastic wave exceeds the spatial heterogeneity. However, it is unclear how stress-dependent long-wavelength elastic waves propagate through a repetitive rock-joint system with multiple joints. A preliminary numerical simulation was performed in in this study to investigate long-wavelength elastic wave propagation in regularly jointed rock masses using the three-dimensional distinct element code program. First, experimental studies using the quasi-static resonant column (QSRC) testing device are performed on regularly jointed disc column specimens for three different materials (acetal, aluminum, and gneiss). The P- and S-wave velocities of the specimens are obtained under various normal stress levels. The normal and shear joint stiffness are calculated from the experimental results using an equivalent continuum model and used as input parameters for numerical analysis. The spatial and temporal sizes are carefully selected to guarantee a stable numerical simulation. Based on the calibrated jointed rock model, the numerical and experimental results are compared.

Computational mechanics and optimization-based prediction of grain orientation in anisotropic media using ultrasonic response

  • Kim, Munsung;Moon, Seongin;Kang, To;Kim, Kyongmo;Song, Sung-Jin;Suh, Myungwon;Suhr, Jonghwan
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1846-1857
    • /
    • 2021
  • Ultrasonic nondestructive testing is important for monitoring the structural integrity of dissimilar metal welds (DMWs) in pressure vessels and piping in nuclear power plants. However, there is a low probability of crack detection via inspection of DMWs using ultrasonic waves because the grain structures (grain orientations) of the weld area cause distortion and splitting of ultrasonic beams propagating in anisotropic media. To overcome this issue, the grain orientation should be known, and a precise ultrasonic wave simulation technique in anisotropic media is required to model the distortion and splitting of the waves accurately. In this study, a method for nondestructive prediction of the DMW grain orientations is presented for accurate simulation of ultrasonic wave propagation behavior in the weld area. The ultrasonic wave propagation behavior in anisotropic media is simulated via finite-element analysis when ultrasonic waves propagate in a transversely isotropic material. In addition, a methodology to predict the DMW grain orientation is proposed that employs a simulation technique for ultrasonic wave propagation behavior calculation and an optimization technique. The simulated ultrasonic wave behaviors with the grain orientations predicted via the proposed method demonstrate its usefulness. Moreover, the method can be used to determine the focal law in DMWs.

포화된 다공성매체에서 파동의 전파특성 I. 이론해의 유도 (Wave Propagation Characteristics in Saturated Porous Media I. Theoretical Solution)

  • 김선훈;김광진
    • 한국전산구조공학회논문집
    • /
    • 제20권2호
    • /
    • pp.95-103
    • /
    • 2007
  • 본 논문에서는 포화된 다공성매체에서 파동의 전파속도와 감쇠를 구할 수 있는 해석적 이론해를 유도하여 제시하였다. 이론해의 유도를 위하여 압축성의 고체입자와 간극수를 고려하는 완전 연계 Field모델을 사용하였다. 완전 포화된 다공성 매체의 해석을 위한 공학적인 접근방법이 채택되었으며, 균질 영역에서 1차원 파동의 전파를 위한 이론해가 유도되었다. 본 논문에서 유도한 이론해는 고체입자의 압축성, 간극수의 압축성, 다공성입자의 변형, 공간의 감쇠(Spatial damping) 등을 고려할 수 있어 매우 다양하게 사용될 수 있다. 또한 다양한 지반체에서 두 가지 종류의 파속(Wavespeed)과 감쇠계수를 계산하는데 이용 가능하다. 본 논문에서 제시한 이론해를 전산코드화하여 파동의 전파속도와 감쇠에 대한 파라미터연구를 수행한 결과는 본 연구의 II부에 제시할 예정이다.

Investigation of wave propagation in anisotropic plates via quasi 3D HSDT

  • Bouanati, Soumia;Benrahou, Kouider Halim;Atmane, Hassen Ait;Yahia, Sihame Ait;Bernard, Fabrice;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Geomechanics and Engineering
    • /
    • 제18권1호
    • /
    • pp.85-96
    • /
    • 2019
  • A free vibration analysis and wave propagation of triclinic and orthotropic plate has been presented in this work using an efficient quasi 3D shear deformation theory. The novelty of this paper is to introducing this theory to minimize the number of unknowns which is three; instead four in other researches, to studying bulk waves in anisotropic plates, other than it can model plates with great thickness ratio, also. Another advantage of this theory is to permits us to show the effect of both bending and shear components and this is carried out by dividing the transverse displacement into the bending and shear parts. Hamilton's equations are a very potent formulation of the equations of analytic mechanics; it is used for the development of wave propagation equations in the anisotropic plates. The analytical dispersion relationship of this type of plate is obtained by solving an eigenvalue problem. The accuracy of the present model is verified by confronting our results with those available in open literature for anisotropic plates. Moreover Numerical examples are given to show the effects of wave number and thickness on free vibration and wave propagation in anisotropic plates.