• Title/Summary/Keyword: wave pressure function

Search Result 177, Processing Time 0.023 seconds

An Analysis of the Wave Propagation of the flow-induced Elastic Stress Waves in the Layered Structure and it's 1 D.O.F. Modelling (적층구조물내의 유체유발 탄성응력파의 전파해석 및 1 자유도계 모델링)

  • Lee, J.K.;Lee, U.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.132-139
    • /
    • 1995
  • Turbulent boundary layer pressure fluctuation exerted on the surface of a structure can give rise to a elastic stress wave on the surface of the structure. The stress wave so called surface wave, will not only propagate along the surface of structure but also penerate into the structure. To reduce the transmission of stress wave into the structure the elastomer layer is usually attactched on the surface of structure. The transfer function, which is defined herein as the ratio of stress waves at the surface and bottom of the elastomer layer, is derved by use of the cylindrical coordinates system. The elastodynamics of the elastomer layer subjected to the turbulent boundary layer pressure fluctuation is represented by the simplified one degree-of-freedom model for easy prediction of the stress wave transmission as well as efficient design of the elastomer layer.

  • PDF

A Study on the Kinematics of Ocean Waves by Gravity Wave Theory and Stream Function Method (해양파(海洋波)의 운동학(運動學)에 대한 중력파이론(重力波理論)과 Steam Function Method의 비교연구(比較硏究))

  • Y.K.,Bang;I.H.,Chang;H.S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.2
    • /
    • pp.33-39
    • /
    • 1982
  • It is one of the basic problems of naval architecture and ocean engineering how to describe the wave kinematics normally under the assumption of an ideal fluid. At present, there are many wave theories available for design purposes. These can be classified into two groups: One is the analytic theory and the other is the numerical theory. This paper briefly introduces the stream function method of R.G. Dean which belongs to the latter group and shows its numerical evaluations exemplified for two cases: One is applied to observed waves and the other is for design waves. In the former case, the wave profiles are calculated by the stream function method and compared with those of the observed waves and also with the results of R.G. Dean. They show good agreement. In the latter case, the wave kinematics and wave loads on a column of diameter 1m are calculated by the stream function method and these are compared with those resulted from the 5th-order gravity wave theory. As a result of comparison the values by the stream function method are slightly larger than those by the 5th-order gravity wave theory but the difference are negligible. From this it is concluded that the stream function method is very useful. And as characteristics of the numerical theories, the stream function method of R.G. Dean can be easily extended to the higher order terms and can include easily the current velocity and the pressure distribution on the free surface. In addition, when the data of observed wave profile are given, this method can reproduced the observed wave profile as closely as possible so that this method seems to describe the ocean wave more realistically. And from standpoint of a mathematical principle the stream function method exactly satisfies the kinematic free-surface boundary condition.

  • PDF

Study on slamming pressure calculation formula of plunging breaking wave on sloping sea dike

  • Yang, Xing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.439-445
    • /
    • 2017
  • Plunging breaker slamming pressures on vertical or sloping sea dikes are one of the most severe and dangerous loads that sea dike structures can suffer. Many studies have investigated the impact forces caused by breaking waves for maritime structures including sea dikes and most predictions of the breaker forces are based on empirical or semi-empirical formulae calibrated from laboratory experiments. However, the wave breaking mechanism is complex and more research efforts are still needed to improve the accuracy in predicting breaker forces. This study proposes a semi-empirical formula, which is based on impulse-momentum relation, to calculate the slamming pressure due to plunging wave breaking on a sloping sea dike. Compared with some measured slamming pressure data in two literature, the calculation results by the new formula show reasonable agreements. Also, by analysing probability distribution function of wave heights, the proposed formula can be converted into a probabilistic expression form for convenience only.

Mechanistic Pressure Jump Terms based on the System Eigenvalues of Two-Fluid Model for Bubbly Flow (2-유체 모델의 고유치에 근거한 기포류에서의 계면압력도약항)

  • Chung, M.S.;Lee, W.J.;Lee, S.J.;Song, C.H.;Ha, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.81-86
    • /
    • 2001
  • Interfacial pressure jump terms based on the physics of phasic interface and bubble dynamics are introduced into the momentum equations of the two-fluid model for bubbly flow. The pressure discontinuity across the phasic interface due to the surface tension force is expressed as the function of fluid bulk moduli and bubble radius. The consequence is that we obtain from the system of equations the real eigenvalues representing the void-fraction propagation speed and the pressure wave speed in terms of the bubble diameter. Inversely, we obtain an analytic closure relation for the radius of bubbles in the bubbly flow by using the kinematic wave speed given empirically in the literature. It is remarkable to see that the present mechanistic model using this practical bubble radius can indeed represent both the mathematical well-posedness and the physical wave speeds in the bubbly flow.

  • PDF

The Propagation Characteristics of the Pressure in the Volume Loaded Fluid Transmission Line (체적부하를 갖는 유체 전달관로의 압력전파 특성)

  • 윤선주;손병진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3075-3083
    • /
    • 1994
  • The applications of the electrical transmission line theory to the pressure propagation characteristics in the volume loaded fluid transmission line with step and impulse input wave is demonstrated in this paper. The method is based on the premise that the time response is the inverse Fourier transform of frequency spectrum of the wave which spectrum is a product of frequency spectrum of input pressure wave and system transfer function. The frequency response and transient response of step and impulse input wave in the volume loaded fluid transmission line is analysed by the Laplace transform and inverse Laplace transform with FFT numerical algorithm. The numerical solution of the distributed friction model is compared with the average friction model and the infinite product model. And the result is showed that FFT method may have major advantages for the simulation of fluid circuitary.

Distance Attenuation of Bending Wave to Analyze the Loose Parts Impact Signal (금속파편 충격 신호분석을 위한 굽힘파의 거리 감쇠)

  • Lee, Jeong-Han;Park, Jin-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.5
    • /
    • pp.594-601
    • /
    • 2016
  • Mass estimation analysis of loose-parts in pressure vessel is necessary for the structural integrity assessment of pressure boundary in nuclear power plants. Mass of loose-parts can be generally estimated from the peak values and the center frequency of impact signals. Magnitude of impact signals is, however, inevitably attenuated according to the traveling distance of the signals and depending on the frequencies. Attenuation rate must be therefore carefully compensated for the precise estimation of loose-part mass. This paper proposes a new compensation method for the attenuation rate based on Bessel function instead of Hankel function in conventional method which has a limitation of usage in near the impact location. It was verified that the suggested compensating equation based on the Bessel function can be applied to the attenuation rate calculation without any limitation.

Wave Breaking and Breaking Wave-Induced High Frequency Pressure over Submerged Breakwater (잠제에 의한 쇄파 및 쇄파에 의해 발생하는 고주파수파동압)

  • Koichiro IWATA;Koji KAWASAKI;Hirokazu SUMI
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.14-23
    • /
    • 2002
  • Wave breaking and breaking wave-induced hydrodynamics are very important subjects in the field of coastal and ocean hydrodynamics and engineering. In the coastal zone, a submerged breakwater has been increasingly popular, since it is one of nature-matching structures with multi- functions such as (1) wave energy dissipation by wave breaking and friction, (2) oxygen supply to sea by wave breaking and breaking wave, (3) water purification by entrained air bubbles, (4) keeping. good seascape. and (5) good habitat for sea livings. Recently, the breaking wave-induced high frequency pressure over a submerged breakwater is said to have a function of gathering sea livings around the structure, which has encouraged the construction of the submerged breakwater in coastal zone. (omitted)

  • PDF

Study of Nearshore OWC Wave Power Absorbing Breakwater (연안고정식 파력발전 겸 OWC 방파제 성능연구)

  • Hong, Do-Chun;Shin, Seung-Ho;Hong, Key-Yong;Hong, Seok-Won
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.465-468
    • /
    • 2006
  • The wave power absorbing performance of a bottom-mounted oscillating water column (OWC) chamber structure is studied. The potential problem inside the chamber is solved by making use of the Green integral equation associated with the Rankine Green function while the outer problem with the Kelvin Green function taking account of fluctuating air pressure in the air chamber. The absorbed wave power, wave elevation inside the chamber, reflection coefficient and wave loads are calculated for various values of a parameter related to the fluctuating air pressure. The present methods can also be used for the design of a OWC breakwater which can absorb and reflect the incoming wave energy at the same time.

  • PDF

A Study of Variation of Wave-induced Stresses in a Seabed (파랑하중에 의한 해저지반의 응력변화에 대한 연구)

  • 장병욱;박영권;우철웅
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.1
    • /
    • pp.79-89
    • /
    • 1996
  • It is expected that the soil hehaviours in the seahed subjected to cyclic wave loads are much different from that on the ground Cyclic shear stresses developed below the ocean bed as a result of a passing wave train may progressively build up pore pressure in certain soils. Such build-up pore pressure may be developed dynamic behaviour such as liquefaction and significant deformation of the seabed. Currently available analytical and testing methods for the seabed subjected to cyclic wave loads are not general. The purpose of the study are to provide a test method in laboratory and to analyse the mechanism of wave-induced stresses and liquefactions potentials of the unsaturated silty marine sand. It is showed that the test set-up made especially for this study delivers exactly oscillatory wave pressures of the form of sine function. Laboratory test results defining the cyclic shear strength of the unsaturated porous medium that is homogenously sedimented. It is understood that the pore water pressure due to induced-waves is not accumulated as the wave number increases but reveals periodical change on the still water surface. The magnitude of the pore water pressure tends to be attenuated radically with a certain time lag under the action of both high and low waves as depth increases.

  • PDF

Mean Drift Force Acting on a Floating OWC Wave Power Device (부유식 OWC 파력발전 챔버의 파 표류력해석)

  • HONG Do-Chun;HONG Sa-Young;HONG Seok-Won
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.373-376
    • /
    • 2002
  • The drift force acting on a floating OWC chamber in waves is studied taking account of fluctuating air pressure in the air chamber. A velocity potential in the water due to the free surface oscillating pressure patch is added to the conventional radiation-diffraction potential problem. The potential problem inside the chamber is formulated by making use of the Green integral equation associated with the Rankine Green function while the outer problem with the Kelvin Green function. The drift forces as well as the chamber motions are calculated taking account of the air pressure in the chamber.

  • PDF