• Title/Summary/Keyword: wave plate

Search Result 857, Processing Time 0.027 seconds

Advanced signal processing for enhanced damage detection with piezoelectric wafer active sensors

  • Yu, Lingyu;Giurgiutiu, Victor
    • Smart Structures and Systems
    • /
    • v.1 no.2
    • /
    • pp.185-215
    • /
    • 2005
  • Advanced signal processing techniques have been long introduced and widely used in structural health monitoring (SHM) and nondestructive evaluation (NDE). In our research, we applied several signal processing approaches for our embedded ultrasonic structural radar (EUSR) system to obtain improved damage detection results. The EUSR algorithm was developed to detect defects within a large area of a thin-plate specimen using a piezoelectric wafer active sensor (PWAS) array. In the EUSR, the discrete wavelet transform (DWT) was first applied for signal de-noising. Secondly, after constructing the EUSR data, the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were used for the time-frequency analysis. Then the results were compared thereafter. We eventually chose continuous wavelet transform to filter out from the original signal the component with the excitation signal's frequency. Third, cross correlation method and Hilbert transform were applied to A-scan signals to extract the time of flight (TOF) of the wave packets from the crack. Finally, the Hilbert transform was again applied to the EUSR data to extract the envelopes for final inspection result visualization. The EUSR system was implemented in LabVIEW. Several laboratory experiments have been conducted and have verified that, with the advanced signal processing approaches, the EUSR has enhanced damage detection ability.

In-plane and out-of-plane waves in nanoplates immersed in bidirectional magnetic fields

  • Kiani, Keivan;Gharebaghi, Saeed Asil;Mehri, Bahman
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.65-76
    • /
    • 2017
  • Prediction of the characteristics of both in-plane and out-of-plane elastic waves within conducting nanoplates in the presence of bidirectionally in-plane magnetic fields is of interest. Using Lorentz's formulas and nonlocal continuum theory of Eringen, the nonlocal elastic version of the equations of motion is obtained. The frequencies as well as the corresponding phase and group velocities pertinent to the in-plane and out-of-plane waves are analytically evaluated. The roles of the strength of in-plane magnetic field, wavenumber, wave direction, nanoplate's thickness, and small-scale parameter on characteristics of waves are discussed. The obtained results show that the in-plane frequencies commonly grow with the in-plane magnetic field. However, the transmissibility of the out-of-plane waves rigorously depends on the magnetic field strength, direction of the propagated transverse waves, small-scale parameter, and thickness of the nanoplate. The criterion for safe transferring of the out-of-plane waves through the conducting nanoplate immersed in a bidirectional magnetic field is also explained and discussed.

Analysis of Steady and Unsteady Performance for 3-D Surface Effect Wing (3차원 표면효과익의 정상 및 비정상 성능해석)

  • Il-Ryong Park;Ho-Hwan Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.3
    • /
    • pp.14-25
    • /
    • 1998
  • This paper describes the numerical modelling for the steady and unsteady forces of 3-D wings flying near the free surface based on a potential based panel method. For the steady problem where a wing flies over the fixed float surface, steady lift and drag forces are calculated for wings with and without end-plates having different sections, angle of attacks, aspect patios and flying heights. These numerical results are compared with the wind tunnel test results. The unsteady problem is treated as a boundary value one where a wing flies over the described wavy surface. The unsteady lift force variations of a wing due to different wave lengths and heights are calculated at different flying heights.

  • PDF

Near-field Sonar Cross Section Analysis of Underwater Target Using Spherical Projection Method (구면투영법을 이용한 수중표적의 근거리장 소나단면적 해석)

  • Kim, Kook-Hyun;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.695-702
    • /
    • 2008
  • In this paper, a new numerical method is proposed to analyze near-field sonar cross section of acoustically large-sized underwater targets such as submarines. A near-field problem is converted to a far-field problem using a spherical projection method with respect to the objective target. Then, sonar cross section is calculated with a physical optics well established in far-field acoustic wave scattering problems. The analysis results of a square flat plate compared with those obtained by other method show the accuracy of the proposed method. Moreover, it is noted that the sonar cross section is varied with respect to the targeting point as well as the range. Finally, numerical analysis results of real-like underwater target such as a submarine pressure hull are discussed.

A Linearly Polarized Long-Cavity Yb:YAG Laser with a Variable-Reflectivity Output Coupler (반사도 가변형 출력경을 갖는 긴 공진기형 선편광 Yb:YAG 레이저의 출력 특성 연구)

  • Kim, Hyun Chul;Lim, Han Bum;Kim, Hyun Su
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.1
    • /
    • pp.38-43
    • /
    • 2015
  • We propose a linearly polarized long-cavity Yb:YAG laser with a variable-reflectivity output coupler and investigate its output characteristics. The variable output coupler consists of a polarized beam splitter and a quarter-wave plate. The linearly polarized laser has a long cavity length of about 3.7 m. The slope efficiency of the proposed laser is 19%, and the beam quality ($M^2$) is about 1.2.

Nondestructive inspection of spent nuclear fuel storage canisters using shear horizontal guided waves

  • Choi, Sungho;Cho, Hwanjeong;Lissenden, Cliff J.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.890-898
    • /
    • 2018
  • Nondestructive inspection (NDI) is an integral part of structural integrity analyses of dry storage casks that house spent nuclear fuel. One significant concern for the structural integrity is stress corrosion cracking in the heat-affected zone of welds in the stainless steel canister that confines the spent fuel. In situ NDI methodology for detection of stress corrosion cracking is investigated, where the inspection uses a delivery robot because of the presence of the harsh environment and geometric constrains inside the cask protecting the canister. Shear horizontal (SH) guided waves that are sensitive to cracks oriented either perpendicular or parallel to the wave vector are used to locate welds and to detect cracks. SH waves are excited and received by electromagnetic acoustic transducers (EMATs) using noncontact ultrasonic transduction and pulse-echo mode. A laboratory-scale canister mock-up is fabricated and inspected using the proposed methodology to evaluate the ability of EMATs to excite and receive SH waves and to locate welds. The EMAT's capability to detect notches from various distances is evaluated on a plate containing 25%-through-thickness surface-breaking notches. Based on the results of the distances at which notch reflections are detectable, NDI coverage for spent nuclear fuel storage canisters is determined.

Laser Welding Characteristics of Aluminum and Copper Sheets for Lithium-ion Batteries (자동차 이차전지 제조를 위한 알루미늄과 무산소동의 레이저 용접특성)

  • Kang, Minjung;Park, Taesoon;Kim, Cheolhee;Kim, Jeonghan
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.58-64
    • /
    • 2013
  • Several joining methods involving resistance welding, laser welding, ultrasonic welding and mechanical joining are currently applied in manufacturing lithium-ion batteries. Cu and Al alloys are used for tab and bus bar materials, and laser welding characteristics for these alloys were investigated with similar and dissimilar material combinations in this study. The base materials used were Al 1050 and oxygen-free Cu 1020P alloys, and a disk laser was used with a continuous wave mode. In bead-on-plate welding of both alloys, the joint strength was higher than the strength of O tempered base material. In overlap welding, the effect of welding parameters on the tensile shear strength and bead shape was evaluated. Tensile shear strength of overlap welded joint was affected by interfacial bead width and weld defect formation. The tensile-shear specimen was fractured at the heat affected zone by selecting proper laser welding parameters.

Power Flow Analysis of Vibration of Coupled Plates Excited by a Point Force In an Arbitrary Direction (임의의 방향 점가진력에 의한 연성 평판 진동의 파워흐름해석)

  • 최재성;길현권;홍석윤
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.181-192
    • /
    • 2001
  • The power flow analysis (PFA) has been performed to analyze the vibration of coupled plates excited by a point force in an arbitrary direction. The point force generates the out-of-plane vibration associated wish flexural waves and the in-plane vibration associated with longitudinal and shear waves. The energy governing equation for each type of waves was introduced and solved to Predict the vibrational energy density and intensity generated by the out-of-plane and in-plane components of the point force in an arbitrary direction. The wave transmission approach was used to consider the mode conversion at the joint of the coupled plates. Numerical results for vibrational energy density and intensity on the coupled plates were presented. Comparison of the results by PFA with exact results showed that PFA can be an effective tool to predict the spatial variation of the vibrational energy and intensity on the coupled plates at high frequencies.

  • PDF

Analysis of Salmonella Contaminated Beef Odor Using an Electronic Nose

  • Kim, Gi-Young;Lee, Kang-Jin;Son, Jae-Yong;Kim, Hak-Jin
    • Food Science of Animal Resources
    • /
    • v.30 no.2
    • /
    • pp.185-189
    • /
    • 2010
  • An electronic nose was used to identify Salmonella contamination on beef based on odors. To detect pathogen contamination of beef, $100{\mu}L$ of $10^5CFU/g$ Salmonella Enteritidis or Salmonella Typhimurium cell suspensions were spiked onto 5 g beef sirloin samples in individual vials. Odor changes over time were then measured and analyzed using an electronic nose system to identify pathogen contamination. In principle, the electronic nose system based on a surface acoustic wave (SAW) detector produced different frequency responses depending on the time and amount of each chemical. Multivariate analysis of the odor data was conducted to detect Salmonella contamination of beef. Salmonella odors were successfully distinguished from uncontaminated beef odors by principal component analysis (PCA). The PCA results showed that Salmonella contamination of beef could be detected after 4 h of incubation. The numbers of cells enumerated by standard plate count after 4 h of inoculation were $2{\times}10^6CFU/g$ for both Salmonella Enteritidis and Salmonella Typhimurium.

Real-time Measurement of Full Field Retardation Near Quarter Wavelength

  • Liu, Longhai;Zeng, Aijun;Yuan, Qiao;Zhu, Linglin;Fang, Ruifang;Huang, Huijie
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.457-461
    • /
    • 2012
  • A real-time method to measure full field retardation near quarter wavelength is proposed. The circularly polarized beam passes through a sample with a large aperture. The measuring beam then goes through a quarter-wave plate and is then split by a Wollaston prism. An image with two sub-images is then detected by a high-speed image sensor. The full field retardation near quarter wavelength can be obtained in real time by processing the image. The measured retardation is independent of the fast axis angle of the sample and the fluctuation of the initial intensity. In experiments, a wedge waveplate is measured with different fast axis angle and initial intensity, and the full field retardations are acquired. The maximum and standard deviation of the full field retardation is $1.5^{\circ}$ and $0.4^{\circ}$. The validity of the method is verified.