• Title/Summary/Keyword: wave periods

Search Result 281, Processing Time 0.022 seconds

Shallow-water Design Waves at Gangreung Beach through the Analysis of Long-term Measured Wave Data and Numerical Simulation Using Deepwater Wave Conditions (장기 파랑관측자료 분석 및 천해파 수치실험에 의한 강릉 해역의 천해설계파)

  • Jeong, Weon Mu;Jun, Ki Cheon;Kim, Gunwoo;Oh, Sang-Ho;Ryu, Kyong-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.5
    • /
    • pp.343-351
    • /
    • 2012
  • In this study, shallow-water design waves are calculated for the return period of 10, 20, 30, and 50 years, based on the extreme value analysis of the wave measurement data at Gangneung beach. These values are compared with the results of SWAN simulation with the boundary condition of the deep-water design waves of the corresponding return periods at the Gangneung sea area provided by the Fisheries Agency (FA, 1988) and Korea Ocean Research & Development Institute (KORDI, 2005). It is found that the shallow-water wave heights at Gangneung beach calculated by the deep-water design waves were significantly less than the observation data. As the return period becomes higher, the significant wave heights obtained by the extreme value analysis becomes higher than those computed by SWAN with the deep-water design waves of the corresponding return periods. KORDI computed the hindcast wave data from January 2004 to August 2008 by WAM with a finer-grid mesh system than those of previous studies. Comparisons of the wave hindcast results with the wave observation show that the reproducibility of the winter-season storm wave was considerably improved compared to the hindcast data from 1979 to 2003. Hereafter, it is necessary to carry out hindcast wave data for the years before 2004 using WAM with the finer-grid mesh system and to supplement the deep-water design wave.

Statisticall Characteristics of Sea Waves at Mookho (묵호항의 파랑특성)

  • 심명필;안수한
    • Water for future
    • /
    • v.10 no.1
    • /
    • pp.101-117
    • /
    • 1977
  • The statatistical characteristics and spectra of sea waves at Mookho were analysed by several statistical methods. As the results, the following conclusions are obtained: 1. Values of surface elevation of sea wave are better fitted to Gram Charlier distribution than Gaussian distribution. This proves that sea waves have not only characters of irregularity but also non-linearity. 2. Distribution of maxima of surface elevation practically follows the distribution of Cartwright and Longuet-Higgins, also spectral width parameter is found to be increased with the increase of root mean square of surface elevation. 3. Sea wave may have spectrum of broad frequency band, however distributions of wave heights and periods follow the Rayleigh distribution which is derived from the assumption of narrow frequency band. 4. Ratios among mean wave heights from observed data show good agreements with theoretical values from Rayleigh distribution. 5. Spectral density and spectral width parameter increase with increase of wind velocity. And wave period at optimum band gas higher value than significant wave period by about 10 percent.

  • PDF

Surface Gravity Waves with Strong Frequency Modulation

  • Lee Kwi-Joo;Shugan Igor V.;An Jung-Sun
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.3 s.70
    • /
    • pp.1-6
    • /
    • 2006
  • Modulation theory describes propagation of surface waves with deep wave number and frequency modulation. Locally spectrally narrow wave packet can have accumulated large scale frequency shift of carrier wave during propagation. Some important nonlinear modulation effects, such as negative frequencies, phase kinks, crest pairing, etc., often observed experimentally at long fetch propagation of finite amplitude surface wave trains, are reproduced by the proposed theory. The presented model permits also to analyze the appropriately short surface wave packets and modulation periods. Solutions show the wave phase kinks to arise on areas' of relatively small free surface displacement in complete accordance with the experiments.

Comparison of Observation Data between Local Waves in Gijang Sea and Donghae Buoy as Optimal Sites for the Wave Power Generation (파력발전 적지 기장 해역과 동해 해상부이 파랑관측치 비교)

  • Yoo, C.I.;Park, J.H.;Kim, H.T.;Yoon, H.S.;Yoon, S.J.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.166-174
    • /
    • 2009
  • Gijang Sea is located on the southeastern coast of Korea. This study establishes a basic system to identify optimal sites for the wave power generation. To achieve this goal, the field measurements were made at the field site in front of Dong-am fishing port at Gijang. In addition, we analyzed the offshore wave data at the Donghae buoy operated by Korea Meteorological Administration(KMA) and compared the data with the wave characteristics in Gijang Sea. The main results were as follows. In winter, the wave direction in Gijang Sea ranged between east and south($90{\sim}180^{\circ}$). The main wave direction was east($90^{\circ}$). The Significant wave heights and periods were under 2 m and $5{\sim}15$ sec, respectively. A comparison of water depth and wave direction constitutes one(condition) of the important parameters for selecting the optimal site for the wave power generation.

Basic Analysis for Improvement of Mooring Stability Under Long Wave Impact

  • Ha, Chang-Sik;Moon, Seung-Hyo;Lee, Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.41 no.5
    • /
    • pp.329-336
    • /
    • 2017
  • This study suggests a general process of analyzing the mooring and cargo handling limit waves, which is an incident to the new energy port under long wave agitation. To reduce damages of ships and harbor structures due to strong wave responses, it is necessary to predict the change of wave field in the mooring berth to make the proper decision by dock master. The berthing area at a new LNG port in the east coast of Korea in this study is frequently affected by oscillations from waves of 8.5~13s periods in the wintertime. The long period waves give difficulties on port operation by lowering the annual berthing ratio. It needs to find the event waves from the real time offshore wave records, which cause over the mooring limits. For that purpose, the wave records from field measurement and offshore wave buoy were analyzed. From numerical simulation, the response characteristics of long period waves in the berthing area were deduced with or without breakwater expansion plan, analyzing the offshore field wave data collected for two years. Some event wave cases caused over the cargo handling and mooring limits as per the standard Korean port design guideline, and those were used for the decision of port operation by dock master, comparing with the real time offshore wave observations.

The Characteristics of Waves on the Steep Sloping Sea Bottom (급경사 해저면에 대한 파랑의 반응특성)

  • Yeom, W.G.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.6 no.2
    • /
    • pp.43-64
    • /
    • 1992
  • This study discusses the interacting with deep water waves approaching from deep water based on the linear wave theory and steep sloping sea bottom floor by the numerical procedure. The results of particular interest are particle velocity and acceleration in x, y, z direction wave height amplification factor reflection coefficient and dimensionless pressure distribution on the steep sloping bottom with respect to the various incident wave angle. The wave loads relative to various bottom slopes, incident wave angles and wave periods on submerged breakwater and pipe are represented in comparison with mild sloping bottom the wave load parameters on the steep sloping bottom seemed to be influenced by variation of incident wave angle. In general the particle velocities and accelerations in x, y, z directions on the steep sloping bottom represented larger value or about two than those on the mild sloping bottom according to incident wave angle. However, the wave height amplification factors did not show distinct difference, but the slight variation with respect to the various incident angle showed on mild sloping bottom. The reflection coefficient increased with respect to increase of the incident angle on the steep sloping bottom the results also indicate that the very steep sloping beach produces a rather substantial amount of reflection as we expected. No significant variation of wave pressure was shown on the steep sloping bottom but it represented a certain amount of variation on the mild sloping bottom according to the various incident wave angle. The analysis at the OTEC site also showed similar results.

  • PDF

A Study on the Development of Guryongpo Harbour and Its Impact (구룡포항의 개발과 파급효과에 관한 연구)

  • 이종우
    • Journal of the Korean Institute of Navigation
    • /
    • v.14 no.1
    • /
    • pp.39-55
    • /
    • 1990
  • Numerical model simulations are conducted for the evaluation of the water level variation in and out of the harbor due to the development and improvement of a harbor. The method used for the numerical analysis is the hybrid element method which includes energy dissipation due to imperfect reflection at the shore boundary and friction at the bottom. The model also includes the radiation condition on the open boundary by the analytic formulation and is applied to a real harbor, Guryongpo Harbor at the east coast of Korea. The result of experiment within the selected wave frequency band shows that the amplification factor out of the harbor is more than 2.0 at 32 sec period and strong responses near 20 sec, 25 sec, 54 sec periods in the harbor. Moreover, simulation results indicate that other longer wave periods affect to the variation of water level and horizontal water particle velocity exist. Thus, it seems to be necessary to modify the planform and the design of the harbor structures for the coming development.

  • PDF

Group-Bounded Long Waves and Harbor Oscillation (항만(港灣) 및 해안공학파군(海岸工學波群)에 따른 장주기파(長週期波)와 항만(港灣)의 진동(振動))

  • Lee, Cheol Eung;Lee, Kil Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.607-618
    • /
    • 1994
  • Effects of wave grouping on the harbor oscillation are studied in order to clarify the energy source of harbor resonance. The resonant periods of Donghae harbor and Imwon harbor are calculated using the boundary integral equation method. Also, the periods of the group-bounded long waves due to the irregular wave group are calculated using the theory developed in this study. Analyzing from the view point of period, it is concluded that the group-bounded long waves due to the irregular wave group can cause resonance in small harbors such as fishery harbors, and heavy ship motion in large harbors such as industrial ones.

  • PDF

Development of Algorithm for Measuring Oscillating Angles and Periods of Ships in a Seaway (파랑중 실선의 동요각 및 동요 주기 추정 알고리듬 개발)

  • Choi, Kwang-Sik;Won, Moon-Cheol;Ryu, Sang-Hyun;Lew, Jae-Moon;Ji, Yong-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.141-149
    • /
    • 2010
  • It is essential to find oscillating angles and periods in a seaway when designing and manufacturing stabilizers. It is difficult to find oscillating angles and periods in high speed turning and they vary with ship speed and wave heading angles, therefore, proper algorithm to measure oscillating periods in a seaway. In the present study, three kinds of algorithms are developed to measure oscillating angles periods in a seaway. Dual axis tilt sensor of low price is used to measure oscillating angles, and the effect of lateral accelerations on tilt sensor have been reduced by the fusion algorithm using the gyro sensor signals. Analog and digital filters are applied to minimize the noise of the signals. Three kinds of algorithms, zero crossing, peak to peak and moving zero crossing algorithm, are developed to measure oscillating periods in a seaway. It is found that the moving zero algorithm showed the best results in the sea trials.

Long Wave Investigation at the Shelf and in the Bays of South Kuril Islands (남부 Kuril 열도의 육붕과 만에서의 장파분석)

  • Djumagaliev, V.A.;Rabinovich, A.B.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.4
    • /
    • pp.318-328
    • /
    • 1993
  • A series of long wave measurements was made in the region of Shikotan Island (the South Kuril Islands) during 1990-1992: 7 bottom pressure stations were installed in 5 bays and inlets of Shikotan and 3 precise microbarographs were situated at the shore. The observations were taken in order to monitor tsunami waves, estimate resonance features of coastal topography, and investigate seiche generation mechanism. It was found that forced long waves dominate in the motions with periods exceeding 2 hours, freely propagating long waves prevail at periods of 30-120 min and eigen-oscillations of bays (seiches) are the predominant type of long waves at periods less than 30 min. The Helmholtz mode with period 30 min in Krabovaya Bay and 18.5 min in Malokurilskaya Bay is the most important type of wave motion in the inner Shikotan basins. There is a good correlation between passages of atmospheric disturbances and generation of seiches near the coast of Shikotan Island. In particular, jumps in atmospheric pressure excite seiches in different bays simultaneously, in each one with the corresponding dominant period. The atmospheric spectra were remarkably smooth and stable, and could be described by a $\omega$$^{-2}$26/ power law.

  • PDF