• Title/Summary/Keyword: wave heights

Search Result 292, Processing Time 0.026 seconds

Difference of tension on mooring line by buoy type (부이 형상에 따른 부이줄 장력의 차이)

  • Lee, Gun-Ho;Kim, In-Ok;Cha, Bong-Jin;Jung, Seong-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.3
    • /
    • pp.233-243
    • /
    • 2014
  • The difference of mooring tension by type of buoy was investigated in the circulating water channel and the wave tank for deducting the most stable buoy from the current and the wave condition. 5 types of buoy made up of short cylinder laid vertically (CL-V), short cylinder laid horizontally (CL-H), capsule (CS), sphere (SP) and long cylinder (CL-L) were used for experiments. A mooring line and a weight were connected with each buoy. A tensile gauge was installed between a mooring line and a weight. All buoy's mooring tension was measured at the same time for the wave test with periods of 1.5~3.0 sec and wave heights of 0.1~0.3 m, and the current test with flow speeds of 0.2~1.0 m/sec. As a result, the order of tension value in the wave test was CL-H > CL-V > SP > CS > CL-L. In the current test CL-V and CL-H were recorded in the largest tension value, whereas SP has the smallest tension value. So it seems that SP buoy is the most effective in the location affected by fast current. CS is predicted to be suitable for a location that influence of wave is important more than that of current if practical use in the field is considered. And it was found that the difference of mooring tension among buoys in wave is related to the product of the cross sectional area and the drag coefficient for the buoy's bottom side in high wave height. The factor for the current condition was not found. But it was supposed to be related to complex factors like a dimension and a shape by buoy's posture to flow.

Long-Term Analysis of Tropical Cyclones in the Southwest Pacific and Influences on Tuvalu from 2000 to 2021

  • Sree Juwel Kumar Chowdhury;Chan-Su Yang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.4
    • /
    • pp.441-458
    • /
    • 2023
  • Tropical cyclones frequently occur in the Southwest Pacific Ocean and are considered one of the driving forces for coastal alterations. Therefore, this study investigates the frequency and intensity of tropical cyclonesfrom 2000 to 2021 and their influence on the surface winds and wave conditions around the atoll nation Tuvalu. Cyclone best-track and ERA5 single-level reanalysis data are utilized to analyze the condition of the surface winds, significant wave heights, mean wave direction, and mean wave period. Additionally, the scatterometer-derived wind information was employed to compare wind conditions with the ERA5 data. On average, nine cyclones per year originated here, and the frequency increased to 11 cyclones during the last three years while the intensity decreased by 25 m/s (maximum sustained wind speed). Besides, a total of 14 cyclones were observed around Tuvalu during the period from 2015 to 2021, which showed an increase of 3 cyclones compared to the preceding period of 2001 to 2007. During cyclones, the significant wave height reached the highest 4.8 m near Tuvalu, and the waves propagated in the east-southeast direction during most of the cyclone events (52%). In addition, prolonged swells with a mean wave period of 7 to 11 seconds were generated in the vicinity of Tuvalu, for which coastal alteration can occur. After this preliminary analysis, it was found that the waves generated by cyclones have a crucial impact in altering the coastal area of Tuvalu. In the future, remotely sensed high-resolution satellite data with this wave information will be used to find out the degree of alterations that happened in the coastal area of Tuvalu before and after the cyclone events.

Distribution and Trend Analysis of the Significant Wave Heights Using KMA and ECMWF Data Sets in the Coastal Seas, Korea (KMA와 ECMWF 자료를 이용한 연안 유의파고의 분포 및 추세분석)

  • Ko, Dong Hui;Jeong, Shin Taek;Cho, Hong Yeon;Seo, Kyoung Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.3
    • /
    • pp.129-138
    • /
    • 2017
  • The coastal wave environment is a very important factor that directly affects the change of coastal topography, the habitat of marine life, and the design of offshore structures. In recent years, changes in the wave environment due to climate change are expected, and a trend analysis of the wave environment using available data sets is required. In this paper, significant wave heights which are measured at six ocean buoys (Deokjeokdo, Oeyeondo, Chibaldo, Marado, Pohang, Ullengdo) have been used to analyze long-term trend of normal waves. In advance, the outlier of measured data by Korea Meteorological Administration have been removed using Rosner test. And Pearson correlation analysis between the measured data and ECMWF reanalysis data has been conducted. As a results, correlation coefficient between two data were 0.849~0.938. Meanwhile, Mann-Kendall test has been used to analyze the long-term trend of normal waves. As a results, it was found that there were no trend at Deokjeokdo, Oeyeondo and Chibaldo. However, Marado, Pohang and Ullengdo showed an increasing tendency.

Evaluation of Harbour Tranquility Improvement in Pohang New Port by Detached Breakwater (포항신항 도제 축조에 따른 정온도 개선 효과분석)

  • Ryu, Kyong Ho;Jeong, Weon Mu;Kwon, Jinseong;Chang, Yeon S.;Baek, Won-Dae;Kim, Won Goung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.4
    • /
    • pp.230-241
    • /
    • 2020
  • Since the construction of Pohang New Port, the problems of the low harbor tranquility caused by decreasing port operation rate has been continuously reported. In order to improve the harbor tranquility, a detached breakwater (DB) has been constructed outside the outer breakwater of Pohang New Port in 2018~2020. In this study, the effectiveness of the DB was proved by comparing the reduction rates of wave heights that were observed before and after the construction of the DB. First, the observed data were compared with the numerical model results available from a previous study, and the model data showed reasonable agreement with measured data at 3 out of 4 locations inside the port. The discrepancy in one of the locations was because the model could not accurately calculated the effect of wave interference in the inner corner of the port. The observation data showed excellent results that the number of waves that exceeded 0.3 m, the critical value to reach desired harbor tranquility, was significantly reduced after the construction of the DB. In addition, the reduction rate, the ratio of wave heights between outside and inside of the port, was decreased after the DB construction, which proved that properly designed coastal structures such as DB in this study could be effective in improving the port tranquility. The results of this study can be usefully applied for solving problems in similar cases.

Development of a Probabilistic Model for the Estimation of Yearly Workable Wave Condition Period for Offshore Operations - Centering on the Sea off the Ulsan Harbor (해상작업 가능기간 산정을 위한 확률모형 개발 - 울산항 전면 해역을 중심으로)

  • Choi, Se Ho;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.115-128
    • /
    • 2019
  • In this study, a probabilistic model for the estimation of yearly workable wave condition period for offshore operations is developed. In doing so, we first hindcast the significant wave heights and peak periods off the Ulsan every hour from 2003.1.1 to 2017.12.31 based on the meteorological data by JMA (Japan Meterological Agency) and NOAA (National Oceanic and Atmospheric Administration), and SWAN. Then, we proceed to derive the long term significant wave height distribution from the simulated time series using a least square method. It was shown that the agreements are more remarkable in the distribution in line with the Modified Glukhovskiy Distribution than in the three parameters Weibull distribution which has been preferred in the literature. In an effort to develop a more comprehensive probabilistic model for the estimation of yearly workable wave condition period for offshore operations, wave height distribution over the 15 years with individual waves occurring within the unit simulation period (1 hour) being fully taken into account is also derived based on the Borgman Convolution Integral. It is shown that the coefficients of the Modified Glukhovskiy distribution are $A_p=15.92$, $H_p=4.374m$, ${\kappa}_p=1.824$, and the yearly workable wave condition period for offshore work is estimated to be 319 days when a threshold wave height for offshore work is $H_S=1.5m$. In search of a way to validate the probabilistic model derived in this study, we also carry out the wave by wave analysis of the entire time series of numerically simulated significant wave heights over the 15 years to collect every duration periods of waves the height of which are surpassing the threshold height which has been reported to be $H_S=1.5m$ in the field practice in South Korea. It turns out that the average duration period is 45.5 days from 2003 to 2017, which is very close to 46 days from the probabilistic model derived in this study.

An Analysis of Statistical Characteristics of Nonlinear Ocean Waves (비선형 해양파의 통계적 특성에 대한 해석)

  • Kim, Do-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.2
    • /
    • pp.112-120
    • /
    • 2010
  • In this paper time series wave data measured continuously for 24 hours during a storm in Yura Sea Area are used to investigate statistical characteristics of nonlinear waves. The exceedance probability of wave height is compared using the Rayleigh distribution and the Edgeworth-Rayleigh (ER) distribution. Wave data which show stationary state for 10 hours contain 4600 waves approximately. The Gram-Chalier distribution fits the probability of wave elevation better than the Gaussian distribution. The Rayleigh ($H_{rms}$) distribution follows the exceedance probability of wave height in general and predicts the probability of freak waves well. The ER distribution overpredicts the exceedance probability of wave heights and the occurrence of freak waves. If wave data measured for 30 minute period which contains 250 waves are used, the ER distribution can predict the occurrence probability of freak waves well. But it overpredicts the probability of overall wave height If no freak wave occurs, the Rayleigh ($H_{rms}$) distribution agrees well with wave height distribution for the most of wave height ranges. The wave height distribution of freak waves of which height are less than 10 m shows similar tendency compared with freak waves greater than 10 m. The value of $H_{max}/H_{1/3}$ is related to the kurtosis of wave elevation. It seems that there exists threshold value of the kurtosis for the occurrence of freak waves.

Dynamic Analysis of Spar Hull Transportation

  • Lee, Jong-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.867-873
    • /
    • 2011
  • The transportation of a truss-spar hull from a transport barge of 6000 ton topside module on the spar hull is investigated in the present study. Two possible routes from a fabrication yard in Teeside, England to the Gulf of Mexico are considered in the paper. The results of motion responses of the transport barge obtained from a spectral analysis and the limiting criteria of sea fastening, deck wetness and lateral acceleration are compared and the route selection is discussed. Long-crested waves and short-crested seas as well as the joint probabilities of significant wave heights and wave periods in different sea areas are considered. Generally speaking, the results for long-crested seas are higher than those for short-crested waves.

Numerical Simulation of Mixing and Combustion in a Normal Injection of the Scramjet (초음속 연소기에서의 혼합과 연소현상에 관한 수치해석)

  • Moon, Su-Yeon;Lee, Choong-Won;Sohn, Chang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.475-480
    • /
    • 2001
  • The flowfield of transverse jet in a supersonic air stream subjected to shock wave turbulent boundary layer interactions is simulated numerically by Generalized Taylor Galerkin(GTG) finite element methods. Effects of turbulence are taken into account with a two-equation $(k-\varepsilon)$ model with a compressibility correction. Injection pressures and slot widths are varied in the present study. Pressure, separation extents, and penetration heights are compared with experimental data. Favorable comparisons with experimental measurements are demonstrated.

  • PDF

New Functional Conductive Polymer Composites Containing Nickel Coated Carbon Black Reinforced Phenolic Resin

  • Farid El-Tantawy;Nadia Abdel Aal;Yong Kiel Sung
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.194-205
    • /
    • 2005
  • The network structure of Ni-coated carbon black (NCB) composites filled with phenolic resin was investigated by means of using scanning electron microscopy, viscosity, interfacial tension, shrinkability, Flory-Huggins interaction parameters, and swelling index. The electrical properties of the composites have been characterized by measurement of the specific conductivity as a function of temperature. Additionally, the variation of conductivity with temperature for the composites has been reported and analyzed in terms of the dilution volume fraction, relative volume expansion, and barrier heights energy. The thermal stability of phenolic-NCB composites has been also studied by means of the voltage cycle processes. The experimental data of EMI wave shielding were analyzed and compared with theoretical calculations. The mechanical properties such as tensile strength, tensile modulus, hardness and elongation at break (EB) of NCB-phenolic resin composites were also investigated.

An investigation into the motion and stability behaviour of a RO-RO vessel

  • Mohan, Poonam;Shashikala, A.P.
    • Ocean Systems Engineering
    • /
    • v.9 no.2
    • /
    • pp.157-177
    • /
    • 2019
  • Studies on motion response of a vessel is of great interest to researchers, since a long time. But intensive researches on stability of vessel during motion under dynamic conditions are few. A numerical model of vessel is developed and responses are analyzed in head, beam and quartering sea conditions. Variation of response amplitude operator (RAO) of vessel based on Strip Theory for different wave heights is plotted. Validation of results was done experimentally and numerical results was considered to obtain effect of damping on vessel stability. A scale model ratio of 1:125 was used which is suitable for dimensions of wave flume at National Institute of Technology Calicut. Stability chart are developed based on Mathieu's equation of stability. Ince-Strutt chart developed can help to capture variations of stability with damping.