DOI QR코드

DOI QR Code

Distribution and Trend Analysis of the Significant Wave Heights Using KMA and ECMWF Data Sets in the Coastal Seas, Korea

KMA와 ECMWF 자료를 이용한 연안 유의파고의 분포 및 추세분석

  • Ko, Dong Hui (Coastal Engineering Division, Korea Institute of Ocean Science & Technology) ;
  • Jeong, Shin Taek (Department of Civil and Environmental Engineering, Wonkwang University) ;
  • Cho, Hong Yeon (Ocean Data Science Division, Korea Institute of Ocean Science & Technology) ;
  • Seo, Kyoung Sik (Research Institute, Hyein E&C)
  • 고동휘 (한국해양과학기술원 연안공학연구본부) ;
  • 정신택 (원광대학교 토목환경공학과) ;
  • 조홍연 (한국해양과학기술원, 해양자료과학실) ;
  • 서경식 ((주)혜인 E&C, 기업부설연구소)
  • Received : 2017.03.10
  • Accepted : 2017.06.23
  • Published : 2017.06.30

Abstract

The coastal wave environment is a very important factor that directly affects the change of coastal topography, the habitat of marine life, and the design of offshore structures. In recent years, changes in the wave environment due to climate change are expected, and a trend analysis of the wave environment using available data sets is required. In this paper, significant wave heights which are measured at six ocean buoys (Deokjeokdo, Oeyeondo, Chibaldo, Marado, Pohang, Ullengdo) have been used to analyze long-term trend of normal waves. In advance, the outlier of measured data by Korea Meteorological Administration have been removed using Rosner test. And Pearson correlation analysis between the measured data and ECMWF reanalysis data has been conducted. As a results, correlation coefficient between two data were 0.849~0.938. Meanwhile, Mann-Kendall test has been used to analyze the long-term trend of normal waves. As a results, it was found that there were no trend at Deokjeokdo, Oeyeondo and Chibaldo. However, Marado, Pohang and Ullengdo showed an increasing tendency.

연안의 파랑환경은 해안지형의 변화, 해양생물의 서식조건, 해양구조물의 설계 등에 직접적인 영향을 미치는 매우 중요한 인자이다. 최근 기후변화로 인한 파랑환경의 변화도 예상되고 있는 상황에서, 가용한 자료를 이용한 파랑환경의 추세분석이 요구된다. 본 연구에서는 한국 연안 6개 지점(덕적도, 외연도, 칠발도, 마라도, 포항, 울릉도) 평상파랑의 부이관측 자료를 이용하여 장기 변화양상을 분석하였다. 먼저, 국내 기상청 해양기상부이 관측 자료의 이상치를 제거하기 위해 Rosner 방법을 사용하였으며, 이를 ECMWF 재해석 자료와 피어슨 상관분석을 수행하였다. 그 결과, 해양기상부이와 ECMWF 자료간의 상관성은 0.849~0.938로 나타났다. 한편, 맨-캔달 검정법을 이용하여 평상파랑의 장기변동 양상을 검토하였으며 그 결과, 덕적도, 외연도, 칠발도 지점은 변동이 없는 것으로 나타났지만, 마라도, 포항, 울릉도 지점은 증가하는 경향을 보였다.

Keywords

References

  1. Ang, A.H.-S. and Tang, W. H. (2007). Probability concepts in engineering : Emphasis on applications to civil and environmental engineering-2nd edition, Wiley.
  2. Ahn, K. and Chun, J.H. (2004). A methodology of estimating design waves for the operable harbor condition using long-term wave data. Journal of Korean Society of Coastal and Ocean Engineers, 16(3), 178-189 (in Korean).
  3. Barnett, V. and Lewis, T. (1994). Outliers in statistical data. John Wiley Sons, 584.
  4. Boes, D.C., Heo, J.-H. and Salas, J.D. (1989), Regional quantile estimation for a Weibull model. Water Resources Research, 25(5), 979-990. https://doi.org/10.1029/WR025i005p00979
  5. Berrisford, P., Dee, D., Poli, P., Brugge, R. and Fielding, K. (2011). ERA report series; The ERA-Interim archive, Version 2.0. ECMWF.
  6. Cho, H., Jeong, W., Baek, W. and Kim, S. (2012). Analysis of the variation pattern of the wave climate in the Sokcho coastal zone. Journal of Korean Society of Coastal and Ocean Engineers, 24(2), 120-127 (in Korean). https://doi.org/10.9765/KSCOE.2012.24.2.120
  7. Cho, H.-Y., Lee, K.-S. and Ahn, S.-M. (2016). Impact of outliers on the statistical measures of the environmental monitoring data in Busan coastal sea. Ocean and Polar Research, 38(2), 149-159 (in Korean). https://doi.org/10.4217/OPR.2016.38.2.149
  8. Crow, E.L. and Shimizu, K. (1988), Lognormal distributions, Marcel Dekker, Inc., New York.
  9. Dodet, G., Bertin, X. and Taborda, R. (2010). Wave climate variability in the North-East Atlantic Ocean over the last six decades. Ocean Modelling, 31, 120-131. https://doi.org/10.1016/j.ocemod.2009.10.010
  10. ECMWF (2016). http://www.ecmwf.int/. European centre for medium-range weather forecasts.
  11. Heo, J.-H., Boes, D.C. and Salas, J.D. (1990), Regional flood frequency modeling and estimation, Water Resources papers No. 101, Colorado State University, Fort Collins, Colorado.
  12. Hirsch, R.M. and Slack, J.R. (1984). A nonparametric trend test for seasonal data with serial dependence. Water Resources Research, 20(6), 727-732. https://doi.org/10.1029/WR020i006p00727
  13. Holthuijsen, L.H. (2007). Waves in oceanic and coastal waters. Cambridge Univ. Press.
  14. Johnson, N.L. and Kotz, S. (1970). Continuous univariate distributions: distributions in statistics. Hougton Mifflin.
  15. Jeong, W.M., Oh, S.-H., Lee, D.-S. and Lee, D.Y. (2007). Comparison of wave power resources in the coastal zone of the Korean east sea estimated by using field measurement wave data. New & Renewable Energy, 3(3), 28-35 (in Korean).
  16. Jeong, W.M., Ryu, K.-H. and Cho, H. (2015). Long-term wave monitoring and analysis off the coast of Sokcho. Journal of Korean Society of Coastal and Ocean Engineers, 27(4), 274-279 (in Korean). https://doi.org/10.9765/KSCOE.2015.27.4.274
  17. KMA (2016). http://www.kma.go.kr.
  18. Lee, D.-S., Ahn, H.-D., Chae, J.-W. and Lee, K.-S. (1988). Characteristics of wave energy distribution in coastal waters off Hupo, Korea. Ocean Research, 10(2), 43-49 (in Korean). https://doi.org/10.1016/S0141-1187(88)80023-3
  19. Mann, H.B. (1945). Nonparametric tests against trend. Econometrica, 13(3), 245-259. https://doi.org/10.2307/1907187
  20. Marthiesen, M. (1994). Estimation of wave height duration statistics. Coastal Engineering, 23, 167-181. https://doi.org/10.1016/0378-3839(94)90021-3
  21. MMAF (2014). Harbor and fishery design criteria. Ministry of Maritime Affairs and Fisheries (in Korean).
  22. Millard, S.P. (2013). EnvStats: an R package for environmental statistics. Springer, New York, 291.
  23. National Environment Research Council (1975). Flood studies report, Volume No.1 Hydrological Studies, Whitefriars Press Ltd., London.
  24. R Core Team (2015). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://cloud.r-project.org/index.html.
  25. Rosner, B. (1983). Percentage points for a generalized ESD manyoutlier procedure. Technometrics, 25(2), 165-172. https://doi.org/10.1080/00401706.1983.10487848
  26. Sobey, R.J. and Orloff, L.S. (1999). Intensity duration - frequency summaries for wave climate. Coastal Engineering, 36, 37-58. https://doi.org/10.1016/S0378-3839(98)00048-9
  27. Song, M., Kim, D., Kim, M., Hong, K. and Jun K. (2004). Analysis of wave energy density for Korean coastal sea area based on long-term simulated wave data. Journal of the Korean Society, 7(3), 157-157 (in Korean).
  28. Weibull, W. (1939). A statistical theory of the strength of material, Ingeniors Vetenskaps Akademiens Handigar, No. 151, Stockholm, Sweden.
  29. Weibull, W. (1951). Statistical distribution function of wide application, Jour. Appl. Mech., ASME, 293-297.

Cited by

  1. A Study on the Predictability of Eastern Winter Storm Waves Using Operational Wind Forecasts of KMA vol.30, pp.5, 2018, https://doi.org/10.9765/KSCOE.2018.30.5.223