• Title/Summary/Keyword: wave drift damping

Search Result 16, Processing Time 0.024 seconds

A Study on the Wave Drift Damping of a Moored Ship in Waves (파랑중 계류된 선박의 표류감쇠에 관한 연구)

  • 이호영;박홍식;신현경
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.17-22
    • /
    • 2000
  • As the offshore oil fields are moved to the deep ocean, the oil production system of FPSO(Floating Production Storage and Offloading System) Type are constructed frequently these days. So, it is very important to estimate the drift motion and damping effects due to the drift motion simultaneously. The components of slow drift motion damping consist of viscous, wave radiation effect and wave drift damping. It is needed to estimate the wave drift damping more accurately than others. The wave drift damping signifies the time-rate of mean wave drift force on oscillating ship or ocean structure which constant speed. In order to calculate this, the 3-Dimensional panel method is employed with the translating and pulsating Green function in the frequency domain. The calculation is carried out for a Series 60 ($C_B$/=0.7) and the results are compared with other numerical ones.

  • PDF

A Study on the Wave Drift Damping of Ship in Waves (파랑중 선박의 표류감쇠에 관한 연구)

  • 이호영;박홍식;신현경
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.7-12
    • /
    • 2000
  • As the offshore oil fields are moved to the deep ocean, the oil production systems of FPSO(Floating production storage and offloading system) are building these days and so it is the most important to estimate the drift motion and damping effects the drift motion importantly. The components of damping consist of viscous, wave radiation effect and wave drift damping. It is need to estimate the wave drift damping exactly among them. The wave drift damping means the change rate of mean wave drift force with respect to the ship and ocean structures speed. In order to calculate this, the 3-Dimensional panel method used to translating and pulsating Green function is adopted. The calculation is carried out for series 60(CB = 0.7) vessel and the results are compared with other theoretical ones.

  • PDF

A Study on the Wave Drift Damping of Moored Floating Structures in Regular Waves (계류된 부유체의 규칙파중 표류감쇠에 대한 연구)

  • Park, In K.;Choi, Hang S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.40-53
    • /
    • 1996
  • In this paper, the wave drift damping is studied. An approximate method is adopted to calculate the wave drift damping for the sake of practical applications. By assuming the ship's forward speed to be low, the Green function and the velocity potential are expanded asymptotically with respect to the Brard number(${\tau}$) and terms up to the first order of ${\tau}$ are retained. Mean wave drift forces are computed straightforwardly. The wave drift damping is estimated as the change rate of the mean wave drift force with respect to the ship's speed. In order to validate the present method, Series 60(Cb=0.7) ship is exemplified for forward speed of Fn=0, 0.02 and 0.04. To predict the wave drift damping experimentally, three geosym models of the Esso-Osaka tanker are used. Also the effect of drift angle on the wave drift damping is also considered. Comparisons between numerical and experimental results show reasonable agreements.

  • PDF

Experimental Study on Slow Drift Motion Damping (장주기 표류운동의 감쇠력에 관한 연구)

  • 김현조;홍사영;김진하
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.4
    • /
    • pp.24-31
    • /
    • 2002
  • In the present study, the amount of slow drift motion damping of shuttle tanker in still water and various environments is measured through free decay model test. Although the estimation of slow drift damping is essential in analysing slow drift motion of moored FPSO or DP controlled shuttle tanker, it is difficult to predict damping accurately by theoretical analysis. The estimation of drift damping depends on model test mostly. Through the model test, the amount of slow drift damping is measured and the effects of environments and thruster action on drift damping are investigated. The measured damping characteristics are expected to be used in the analysis on slow drift motion of moored vessel.

A Study on Motion and Wave Drift Force of a BBDB Type OWC Wave Energy Device (BBDB형 진동수주 파력발전장치의 운동 및 파랑표류력 연구)

  • Kim Jin-Ha;Lew Jae-Moon;Hong Do-Chun;Hong Seok-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.22-28
    • /
    • 2006
  • The motion and wave drift forces of floating BBDB (backward-bent duct buoy) wave energy absorbers in regular waves are calculated, taking account of the oscillating surface-pressure due to the pressure drop in the air chamber above the oscillating water column, within the scope of the linear wave theory. A series of model tests has been conducted in order to order to verify the motion and time mean wave drift force reponses in regular waves at the ocean engineering basin, MOERI/KORDI. The pneumatic damping through an orifice-type duct for the BBDB wave energy device are deducted from experimental research. Numerical simulation for motion and drift force responses of the BBDB wave energy device, considering pneumatic damping coefficients, has been carried out, and the results are compared with those of model tests.

Drift Motion Analyses for a FPSO with Spread Mooring Systems (다점 계류된 원유 저장선에 대한 표류 운동 해석)

  • 이호영;임춘규;신현경
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.222-227
    • /
    • 2001
  • The time simulation of slow drift motions of moored FPSO in waves is presented. The equation of motion based on Cummin's theory of impulse responses are employed, and are consisted of horizonal plane -surge, sway and yaw. The added mass coefficients, wave damping coefficients, first order wave exciting forces and the second order wave drift forces involved in the equations are obtained from a three-dimensional panel method in the frequency domain. The mooring lines are modeled quasistatically as catenary for chains and touchdown. As for numerical example, time domain analyses are carried out for a box-type FPSO in long crest irregular wave condition.

  • PDF

Slow Drift Motion Analyses for a FPSO with Spread Mooring Systems (다점 계류된 원유 저장선에 대한 저주파수 운동 해석)

  • 이호영;박종환;곽영기
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.3
    • /
    • pp.195-201
    • /
    • 2001
  • The time simulation of slow drift motions of moored FPSO in waves is presented. The equation of motion based on Cummin's theory of impulse responses are employed, and are consisted of horizontal plane motions such as surge, sway and yaw. The added mass, wave damping coefficients, first order wave exciting forces and the second order wave drift forces involved in the equations are obtained from three-dimensional panel method in the frequency domain. The mooring lines are modeled as quasi-static catenary cable. As a numerical example, time domain analyses are carried out for a box-type FPSO in long crest irregular wave condition.

  • PDF

Time Domain Analysis of Spar Platform in Waves (파랑 중 스파 플랫폼의 시간영역 해석)

  • LEE Ho-Young;LIM Choon-Gyu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.167-171
    • /
    • 2004
  • The Spar platform with deep draft is characterized as effective structure in extreme wave condition, which has larger natural period than that of waves in sea. In this paper, the time simulation of motion responses of Spar with catenary mooring line is presented in irregular waves. The memory effect is modeled by added mass at infinite frequency and convolution integrals in terms of wave damping coefficients. The added mass, wave damping coefficients and wave exciting forces are obtained from three-dimensional panel method in the frequency domain. The motion equations are consisted of forces for inetia, memory effect, hydrostatic restoring, wave exciting and mooring line. The forces of mooring line are modeled as quasi-static catenary cable.

  • PDF

Time Domain Analysis of a Moored Spar Platform in Waves (파랑 중 계류된 스파 플랫폼의 시간영역 해석)

  • Lee, Ho-Young;Lim, Choon-Gyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.5
    • /
    • pp.1-7
    • /
    • 2004
  • The Spar platform with deep draft is characterized as effective structure in extreme wave condition, which has larger natural period than that of waves in sea. In this paper, the time domain simulation of motion responses of Spar with catenary mooring line is presented in irregular waves. The memory effect is modeled by added mass at infinite frequency and convolution integrals in terms of wave damping coefficients. The added mass, wave damping coefficients and wave exciting forces are obtained from three-dimensional panel method in the frequency domain. The motion equations are consisted of forces for inertia, memory effect, hydrostatic restoring, wave exciting and mooring line. The forces of mooring line are modeled as quasi-static catenary cable.

Performance Prediction of an OWC Wave Power Plant with 3-D Characteristics in Regular Waves

  • Hong, Do-Chun;Hong, Keyyong
    • Journal of Navigation and Port Research
    • /
    • v.36 no.9
    • /
    • pp.729-735
    • /
    • 2012
  • The primary wave energy conversion by a three-dimensional bottom-mounted oscillating water column (OWC) wave power device in regular waves has been studied. The linear potential boundary value problem has been solved following the boundary matching method. The optimum shape parameters such as the chamber length and the depth of the front skirt of the OWC chamber obtained through two-dimensional numerical tests in the frequency domain have been applied in the design of the present OWC chamber. Time-mean wave power converted by the OWC device and the time-mean second-order wave forces on the OWC chamber structure have been presented for different wave incidence angles in the frequency-domain. It has been shown that the peak period of $P_m$ for the optimum damping parameter coincides with the peak period of the time.mean wave drift force when ${\gamma}=0$.