• Title/Summary/Keyword: wave damping

Search Result 405, Processing Time 0.027 seconds

A Study on the Roll Damping of Two-Dimensional Cylinders (2차원 주상체의 횡요감쇠에 대한 연구)

  • Yuck Rae H.;Lee Dong H.;Choi Hang S.;Jin Young M.;Bang Chang S.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.197-200
    • /
    • 2002
  • In this paper, roll damping coefficients for a non-conventional cross section, which is herein named as 'step' model, are investigated numerically and experimentally. Experiments are extensively carried out to estimate the roll damping coefficients. Numerical estimations are also made with the help of numerical codes. For convenience, the roll damping is divided into wave-making component and viscous component. The wave-making component is determined using a potential code and the viscous component using a viscous flow code, in which the fluid domain is taken as unbounded. In order to validate the present approach, a typical cross section with bilge is considered and our results are compared with published data. The comparison shows a good agreement qualitatively. For the step model, numerical results are compared well with experimental data besides some quantitative discrepancies at a certain range of frequency. It is thought that the discrepancy might be caused by the ignorance of the free surface in viscous computations. It is found in the case of the step model that not only the viscous component but also the wave component increases considerably compared to the section with bilge.

  • PDF

Experimental Study on Flow Characteristics of Regular Wave Interacting with Rectangular Floating Structure Using PIV Technique (PIV시스템을 이용한 규칙파중 2차원 사각형 부유식 구조물 주위의 유동특성 연구)

  • Jung, Kwang-Hyo;Chun, Ho-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.41-53
    • /
    • 2006
  • This experimental study investigated the flow characteristics for regular waves passing a rectangular floating structure in a two-dimensional wave tank. The particle image velocimetry (PIV) was employed to obtain the velocity field in the vicinity of the structure. The phase average was used to extract the mean flow and turbulence property from repeated instantaneous PIV velocity profiles. The mean velocity field represented the vortex generation and evolution on both sides of the structure. The turbulence properties, including the turbulence length scale and the turbulent kinetic energy budget were investigated to characterize the flow interaction between the regular wave and the structure. The results shaw the vortex generated near the structure corners, which are known as the eddy-making damping or viscous damping. However, the vortex induced by the wave is longer than the roll natural period of the structure, which presents the phenomena opposing the roll damping effect; that is, the vortex may increase the roll motion under the wave condition longer than the roll natural period.

An Experimental Study of Pneumatic Damping at the Air Chamber for OWC type Wave Energy Device (OWC형 파력발전 공기챔버의 공기감쇠력 실험연구)

  • CHOI Hark-Sun;LEW Jae-Moon;HONG Seok-Won;KIM Jin-Ha
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.138-144
    • /
    • 2004
  • Pneumatic damping through a orifice type duct for OWC type wave energy device is studied experimentally. Forced oscillation tests are made to measure chamber pressure and velocity of air flaw through orifice. Pneumatic damping coefficient are deducted from the experimental research, and discussion are made far the influence of frequency, heave amplitude, and orifice size. Finally two formula are proposed for the estimation of non-dimensional pneumatic damping coefficient by regression analysis. The proposed formula proves to be a reliable method far practical application.

  • PDF

An Experimental Study of Pneumatic Damping at the Air Chamber for an OWC-type Wave Energy Device (OWC형 파력발전 공기챔버의 공기감쇠력 실험 연구)

  • CHOI HARK-SUN;HONG SEOK-WON;KlM JIN-HA;LEW JAE-MOON
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.4 s.59
    • /
    • pp.8-14
    • /
    • 2004
  • Pneumatic damping through an orifice-type duct for an OWC-type wave energy device is studied experimentally. Forced oscillation tests are used to measure chamber pressure and velocity of air-flow through an orifice. Pneumatic damping coefficients are deducted from the experimental research, and the influence of frequency, heave amplitude, and orifice size are discussed. Finally, two formulas are proposed for the estimation of non-dimensional pneumatic damping coefficient by regression analysis. The proposed formula proves to be a reliable method for practical application.

Hydrodynamic Forces on a Two-dimensional Cylinder in Shallow Water (천수역에 놓인 2차원 주상체에 수평방향으로 작용하는 동유체력에 관한 고찰)

  • Hang-S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.2
    • /
    • pp.21-26
    • /
    • 1986
  • An analysis is made of hydrodynamic forces acting horizontally on a two-dimensional cylinder, when it is exposed to incident waves and consequently undergoes a swaying motion in shallow water. Applying the method of matched asymptotic expansions the added mass, wave damping and the wave exciting force are obtained in terms of the difference in potential across the cylinder in a simple manner. The potential jump is related to the so-called blockage coefficient which is determined purely from geometry. It is found that the wave damping coefficient can not exceed the blockage coefficient.

  • PDF

BLOW-UP PHENOMENA OF ARBITRARY POSITIVE INITIAL ENERGY SOLUTIONS FOR A VISCOELASTIC WAVE EQUATION WITH NONLINEAR DAMPING AND SOURCE TERMS

  • Yi, Su-Cheol
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.137-147
    • /
    • 2022
  • In this paper, we considered the Dirichlet initial boundary value problem of a nonlinear viscoelastic wave equation with nonlinear damping and source terms, and investigated finite time blow-up phenomena of the solutions to the equation with arbitrary positive initial data, under suitable conditions.

Wave control fuction and friction damping of a pile-supported floating body (말뚝계류식 부유체의 파랑제어 기능과 마찰감에 관한 연구)

  • 김헌태
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.65-73
    • /
    • 1997
  • The floating body discussed in this study is a 2-D rectangular floating unit supported by four vertical piles at its corners. Structures of this type are frequently seen as floating piers for the crafts in a small harbour. The movement in some modes of motion of such a flating body is fully or partially restrincted by the piles. The authors(Kim et al. 1994) carried out a series of model tests on its wave control function, its motion and the loads on piles. The experimental results showed that a certain degree of intial constriction force which clamps the floating unit in the horizontal direction can effectively reduce the body motion and wave energy without increasing mooring forces. This may be due to the friction forces occuring between the piles and the rollers installed in the mooring equipments on the floating unit. In this paper, we develop a numerical model for the prediction of wave transformation and floating body motions, where the friction force is idealized as the Coulomb friction and linearized into a damping force using the equivalent damping cofficient. This linearization is verified by comparing the results of motions between the linear and nonlinear analysis of the ezuations of motion. We further compare the caculation results by the linear model with the experimental results and discuss the effect of the friction force or the constriction force on body motions and wave energy dissipation.

  • PDF

Linear Shallow Water Equations for Waves with Damping (파랑 에너지 감쇠가 있는 경우의 선형천수방정식)

  • Jung, Tae-Hwa;Lee, Chang-Hoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • Wave characteristics in the presence of energy damping are investigated using the linear shallow water equations. To get the phase and energy velocities, geometric optics approach is used and then these values are validated through numerical experiments. Energy damping affects wave height, phase and energy velocities which result in wave transformation. When the complex wavenumber is used by the Eulerian approach, it is found that the phase velocity decreases as the damping increases while the energy velocity increases showing higher values than the phase velocity. When the complex angular frequency is used by the Lagrangian approach, the energy-damping wave group is found to propagate in the energy velocity. The energy velocity is found to affect shoaling and refraction coefficient which is verified through numerical experiments for waves on a plane slope.

Numerical Study of Nonlinear Acoustic Damping Induced by Acoustic Resonators in a Rocket Combustor (로켓엔진 연소기내 공명기에 의한 비선형 음향감쇠에 관한 수치해석적 연구)

  • Sohn, Chae-Hoon;Park, I-Sun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2007
  • Nonlinear acoustic damping of a half-wave acoustic resonator in a rocket combustor is investigated numerically adopting a nonlinear acoustic analysis. First, in a baseline chamber without any resonators, acoustic behavior is investigated over the wide range of acoustic amplitude from 80 dB to 150 dB. Damping factor increases nonlinearly with acoustic amplitude and nonlinearity becomes appreciable at acoustic amplitude above 125 dB. Next, damping effect of a half-wave resonator is investigated. It is found that nonlinear acoustic excitation does not affect optimum tuning condition of the resonator, which is derived from linear acoustics. A half-wave resonator is effective even for acoustic damping of high-amplitude pressure oscillation, but its function of acoustic damper is relatively weakened compared with the case of linear acoustic excitation.

A Study on the Treatment of Open Boundary in the Two-Dimensional Free-Surface Wave Problems

  • Kim, Yong-Hwan
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.2 no.1
    • /
    • pp.63-78
    • /
    • 1994
  • This paper deals with the treatment of the open boundary in two-dimensional free-surface wave problems. Two numerical schemes are investigated for the implementation of the open boundary condition. One is to add the artificial damping term to the dynamic free-surface boundary condition, in which the determination of suitable damping coefficient and the damping zone is the most important. The other is a modified Orlanski's method, which is known to be very useful for the uni-directional waves. Using these two schemes, numerical tests have been conducted for a few typical free-surface wave problems. To obtain the numerical solution of the free-surface boundary value problem, the fundamental source-distribution method is used and the fully nonlinear free-surface boundary conditions are applied. The computed results are presented in comparison with those of others for the proof of practicality of these two schemes.

  • PDF