• Title/Summary/Keyword: watershed water balance

Search Result 162, Processing Time 0.023 seconds

Groundwater Modeling for Estimating Water Balance over Pyosun Watershed in Jeju Island (제주도 표선유역의 물수지 평가를 위한 지하수 유동 모델링)

  • Song, Sung-Ho;Lee, Gyu-Sang;An, Jung-Gi;Jeon, Sun-Geum;Yi, Myung-Jae
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.495-504
    • /
    • 2015
  • To estimate water balance of Pyosun watershed in Jeju Island, a three-dimensional finite difference model MODFLOW was applied. Moreover, the accuracy of groundwater flow modeling was evaluated through the comparison of the recharge rate by flow modeling and the existing one from water balance model. The modeling result under the steady-state condition indicates that groundwater flow direction was from Mt. Halla to the South Sea and groundwater gradient was gradually lowered depending on the elevation. Annual recharge rate by the groundwater flow modeling in Pyosun watershed was calculated to 236 million $m^3/year$ and it was found to be very low as compared to the recharge rate 238 million $m^3/year$ by the existing water balance model. Therefore, groundwater flow modeling turned out to be useful to estimate the recharge rate in Pyosun watershed and it would be available to make groundwater management policy for watershed in the future.

Development and Application of Water Balance Network Model in Agricultural Watershed (농업용수 유역 물수지 분석 모델 개발 및 적용)

  • Yoon, Dong-Hyun;Nam, Won-Ho;Koh, Bo-Sung;Kim, Kyung-Mo;Jo, Young-Jun;Park, Jin-Hyeon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.3
    • /
    • pp.39-51
    • /
    • 2024
  • To effectively implement the integrated water management policy outlined in the National Water Management Act, it is essential to analyze agricultural water supply and demand at both basin and water district levels. Currently, agricultural water is primarily distributed through open canal systems and controlled by floodgates, yet the utilization-to-supply ratio remains at a mere 48%. In the case of agricultural water, when analyzing water balance through existing national basin water resource models (K-WEAP, K-MODISM), distortion of supply and regression occurs due to calculation of regression rate based on the concept of net water consumption. In addition, by simplifying the complex and diverse agricultural water supply system within the basin into a single virtual reservoir, it is difficult to analyze the surplus or shortage of agricultural water for each field within the basin. There are limitations in reflecting the characteristics and actual sites of rural water areas, such as inconsistencies with river and reservoir supply priority sites. This study focuses on the development of a model aimed at improving the deficiencies of current water balance analysis methods. The developed model aims to provide standardized water balance analysis nationwide, with initial application to the Anseo standard watershed. Utilizing data from 32 facilities within the standard watershed, the study conducted water balance analysis through watershed linkage, highlighting differences and improvements compared to existing methods.

Estimation of Runoff Curve Number for Agricultural Reservoir Watershed Using Hydrologic Monitoring and Water Balance Method (수문모니터링과 물수지법을 이용한 농업용 저수지 유역 유출곡선번호 추정)

  • Yoon, Kwang-Sik;Kim, Young-Joo;Yoon, Suk-Gun;Jung, Jae-Woon;Han, Kuk-Heon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.59-68
    • /
    • 2005
  • The rainfall-runoff potential of Jangseong reservoir watershed was studied based on SCS (Soil Conservation Service, which is now the NRCS, Natural Resources Conservation Service, USDA) runoff curve number (CN) technique. Precipitation and reservoir operation data had been collected. The rainfall-runoff pairs from the watershed for ten years was estimated using reservoir water balance analysis using reservoir operation records. The maximum retention, S, for each storm event from rainfall-runoff pair was estimated for selected storm events. The estimated S values were arranged in descending order, then its probability distribution was determined as log-normal distribution, and associated CNs were found about probability levels of Pr=0.1, 0.5, and 0.9, respectively. A subwatershed that has the similar portions of land use categories to the whole watershed of Jangseong reservoir was selected and hydrologic monitoring was conducted. CNs for subwatershed were determined using observed data. CNs determined from observed rainfall-runoff data and reservoir water balance analysis were compared to the suggested CNs by the method of SCS-NEH4. The $CN_{II}$ measured and estimated from water balance analysis in this study were 78.0 and 78.1, respectively. However, the $CN_{II}$, which was determined based on hydrologic soil group, land use, was 67.2 indicating that actual runoff potential of Jangseong reservoir watershed is higher than that evaluated by SCS-NEH4 method. The results showed that watershed runoff potential for large scale agricultural reservoirs needs to be examined for efficient management of water resources and flood prevention.

Comparison of Daily Soil Water Contents Obtained by Energy Balance-Water Budget Approach and TDR

  • Rim, Chang-Soo
    • Korean Journal of Hydrosciences
    • /
    • v.8
    • /
    • pp.57-68
    • /
    • 1997
  • The daily soil water contents were obtained from the time domain reflectometry(TDR) method and energy balance-water budget approach with eddy correlation at the two small semiarid watersheds of Lucky Hills and Kendall during the summer rainy period. There was a comaprison of daily soil water content measured and estimated from these two different approaches. The comparison is valuable to evaluate the accuracy of current soil water content measuring system using TDR and energy balance-water budget approach using eddy correlation method at a small watershed scale. The degree of simiarity between the regressions of these two methods of measuring soil water content was explained by determining the correlations between these methods. Simple linear regression analyses showed that soil water content measured from TDR method was responsible for 58% and 63% of the variations estimated from energy balance-water budget approach with edy correlation at Lucky Hills and Kendall, respectively. The scatter plots and the regression analyses revealed that two different approaches for soil water content measurement at a small watershed scale have no significant difference.

  • PDF

Development and validation of BROOK90-K for estimating irrigation return flows (관개 회귀수 추정을 위한 BROOK90-K의 개발과 검증)

  • Park, Jongchul;Kim, Man-Kyu
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.87-101
    • /
    • 2016
  • This study was conducted to develop a hydrological model of catchment water balance which is able to estimate irrigation return flows, so BROOK90-K (Kongju National University) was developed as a result of the study. BROOK90-K consists of three main modules. The first module was designed to simulate water balance for reservoir and its catchment. The second and third module was designed to simulate hydrological processes in rice paddy fields located on lower watershed and lower watershed excluding rice paddy fields. The models consider behavior of floodgate manager for estimating the storage of reservoir, and modules for water balance in lower watershed reflects agricultural factors, such as irrigation period and, complex sources of water supply, as well as irrigation methods. In this study, the models were applied on Guryangcheon stream watershed. R2, Nash-Sutcliffe efficiency (NS), NS-log1p, and root mean square error between simulated and observed discharge were 0.79, 0.79, 0.69, and 4.27 mm/d respectively in the model calibration period (2001~2003). Furthermore, the model efficiencies were 0.91, 0.91, 0.73, and 2.38 mm/d respectively over the model validation period (2004~2006). In the future, the developed BROOK90-K is expected to be utilized for various modeling studies, such as the prediction of water demand, water quality environment analysis, and the development of algorithms for effective management of reservoir.

Analysis of Korean TMLD Design Flow Variation due to Large Dam Effluents and Water Use Scenarios

  • Shin, Hyun-Suk;Kang, Doo-Kee;Kim, Sang-Dan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.74-83
    • /
    • 2007
  • The goal of this study is to establish an integrated watershed hydrologic model for the whole Nakdong River basin whose area is an approximately 24,000 km2. Including a number of watershed elements such as rainfall, runoff, water use, and so on, the proposed model is based on SWAT model, and is used to improve the flow duration curve estimation of ungauged watersheds for Korean Total Maximum Daily Load (TMDL). The model is also used to recognize quantitatively the river flow variation due to water use elements and large dam effluents in the whole watershed. The established combined watershed hydrologic model, SWAT-Nakdong, is used to evaluate the quantified influences of artificial water balance elements, such as a dam and water use in the watershed. We apply two water balance scenarios in this study: the dam scenario considering effluent conditions of 4 large multi-purpose dams, Andong dam, Imha dam, Namgang dam, and Habcheon dam, and the water use scenario considering a water use for stream line and the effluent from a treatment plant. The two scenarios are used to investigate the impacts on TMDL design flow and flow duration of particular locations in Nakdong River main stream. The results from this study will provide the basic guideline for the natural flow restoration in Nakdong River.

  • PDF

Assessment of Forest Vegetation Effect on Water Balance in a Watershed (산림식생에 따른 유역 물수지 영향 평가)

  • Kim, Chu- Gyum;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.9
    • /
    • pp.737-744
    • /
    • 2004
  • In this study, to evaluate the effect of forest vegetation on the long-term water balance in a watershed, semi-distributed and physically based parameter model, SWAT was applied to the Bocheong watershed, and the variation of hydrological components such as evapotranspiration, surface flow, lateral flow, base flow, and total runoff was investigated with coniferous and deciduous forests, respectively. First, SWAT model was modified to simulate the actual plant growth pattern of coniferous trees which have the uniform value of leaf area index all the seasons of the year. The modified model was applied to the watershed that is assumed to have only one land cover in the whole watershed, and the variation of the water balance components was investigated for each land cover. It was found that coniferous forest affected the increase in evapotranspiration and decrease in runoff more than deciduous forest. However, the age and the density of stand, the location, and soil characteristics and meteorological conditions including the tree species should be also considered to examine the effect more quantitatively and to reduce the uncertainties in simulated output from the hydrological model.

GIS Application Model for Spatial Simulation of Surface Runoff from a Small Watershed(I) (소유역 지표유출의 공간적 해석을 위한 지리정보시스템의 응용모형(I) -격자 물수지 모형의 개발 및 적용-)

  • 김대식;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.23-33
    • /
    • 1995
  • Geographic data which are difficult to handle by the characteristics of spatial variation and variety turned into a possibility to analyze with tlie computer-aided digital map and the use of Geographic Information System(GIS). The purpose of this study is to develop and apply a GIS application model (GISCELWAB) for the spatial simulation of surface runoff from a small watershed. This paper discribes the modeling procedure and the applicability of the cell water balance model (CELWAB) which calculates the water balance of a cell and simulates surface runoff of watershed simultaneously by the interaction of cells. The cell water balance model was developed to simulate the temporal and spatial storage depth and surface runoff of a watershed. The CELWAB model was constituted by Inflow-Outflow Calculator (JOC) which was developed to connect cell-to-cell transport mechanism automatically in this study. The CELWAB model requests detail data for each component of a cell hydrologic process. In this study, therefore, BANWOL watershed which have available field data was selected, and sensitivity for several model parameters was analyzed. The simulated results of surface runoff agreed well with the observed data for the rising phase of hydrograph except the recession phase. Each mean of relative errors for peak discharge and peak time was 0.21% and2.1 1% respectively. In sensitivity analysis of CELWAB , antecedent soil moisture condition(AMC) affected most largely the model.

  • PDF

THE CHEONGGYE-CHEON ESTORATION PROJECT AND HYDROLOGICAL CYCLE ANALYSIS

  • Kim, Hyeon-Jun;Yoon, Soo-Kil;Noh, Seong-Jin;Jang, Cheol-Hee
    • Water Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.179-187
    • /
    • 2005
  • This paper introduces the Cheonggye-cheon restoration project. The restoration project aims to revive the 600-year-old city of Seoul by recovering the historical heritage, guaranteeing safety from the deteriorated covering structures, creating the environment-friendly space, and revitalizing the neglected city centers. In order to understand the current hydrological cycle of the Chenggye-cheon watershed, the annual water balance of the region was calculated using the observed data including precipitation, runoff, water supply and sewage, and the changes in the groundwater level. The $2001{\sim}2002$ data were used to calibrate the WEP, and the $2003{\sim}2004$ data were used to verify the WEP. The calibration and validation results for the flood hydrograph how a reasonable value (at Majanggyo station, the R2 for the calibration period was 0.9, and that for the validation period was 0.7). According to the annual water balance of the Cheonggye-cheon watershed for 2004, the amount of surface runoff, infiltration, and evapotranspiration was 1,097mm, 216mm and 382mm, respectively, for an annual precipitation of 1,499mm. The application results from WEP, a distributed hydrological model, provide more detailed information of the watershed, and the model will be useful for improving the hydrological cycle in urban watershed.

  • PDF

Streamflow Modeling in Data-scarce Estuary Reservoir Watershed Using HSPF (HSPF 모형과 호소 물수지를 이용한 미계측 간척 담수화호 수문모델링)

  • Seong, Choung Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.129-137
    • /
    • 2014
  • This research presents an streamflow modeling approach in a data-scarce estuary reservoir watershed which has been suffered from high salinity irrigation water problem after completion of land reclamation project in South Korea. Since limited hydrology data was available on the Iwon estuary reservoir watershed, water balance relation of the reservoir was used to estimate runoff from upstream of the reservoir. Water balance components in the reservoir consists precipitation, inflow from upstream, discharge through sluice, and evaporation. Estimated daily inflow data, which is stream discharge from upstream, shows a good consistency with the observed water level data in the reservoir in terms of EI (0.93) and $R^2$ (0.94), and were used as observed flow data for the streamflow modeling. HSPF (Hydrological Simulation Program - Fortran) was used to simulate hydrologic response of upstream of the reservoir. The model was calibrated and validated for the periods of 2006 to 2007 and 2008 to 2009, respectively, showing that values of EI and $R^2$ were 0.89 and 0.91 for calibration period, 0.71 and 0.84 for validation period.