• Title/Summary/Keyword: watershed sediment

Search Result 309, Processing Time 0.028 seconds

Study on Sediment Runoff Reduction using Vegetative Filter Strips in a Mountainous Watershed (초생대를 이용한 산지유역 토사유출 저감에 관한 연구)

  • Son, Kwangik;Kim, Hyungjoon;Lim, Kyoung Jae;Jung, Younghun
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.4
    • /
    • pp.407-417
    • /
    • 2015
  • Soil loss is one of the significant disasters which have threatened human community and ecosystem. Particularly, Korea has high vulnerability of soil loss because rainfall is concentrated during summer and mountainous regions take more than 70% of total land resources. Accordingly, the sediment control management plan are required to prevent the loss of soil resources and to improve water quality in the receiving waterbodies. In this regard, the objectives of this study are 1) to quantify the effect of the Vegetative Filter Strip (VFS) on sediment runoff reduction and 2) to analyze the relationship of rainfall intensity and sediment runoff. For this, SATEEC and VFSMOD were used to estimate sediment runoff according to rainfall intensity and to quantify the effect of VFS on sediment runoff reduction, respectively. In this study, the VFS has higher impact on sediment reduction for lower maximum rainfall intensity, which means that the maximum rainfall intensity is one of significant factors to control sediment runoff. Also, the sediment with VFS considered was highly correlated with maximum rainfall intensity. For these results, this study will contribute to extend the applicability of VFS in establishing eco-friendly sediment control plans.

Analysis of Soil Erosion Reduction Ratio with Changes in Soil Reconditioning Amount for Highland Agricultural Crops (고랭지 농업의 작물별 객토량 변화에 따른 토양유실 저감 분석)

  • Heo, Sunggu;Jun, ManSig;Park, Sanghun;Kim, Ki-sung;Kang, SungKeun;Ok, YongSik;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.185-194
    • /
    • 2008
  • There is increased soil erosion potential at highland agricultural crop fields because of its topographic characteristics and site-specific agricultural management practices performed at these areas. The agricultural upland fields are usually located at the sloping areas, resulting in higher soil loss, pesticides, and nutrients in case of torrential rainfall events or typhoon, such as 2002 Rusa and 2003 MaeMi. At the highland agricultural fields, the soil reconditioning have been performed every year to decrease damage by continuous cropping and pests. Also it has been done to increase crop productivity and soil fertility. The increased amounts of soil used for soil reconditioning are increasing over the years, causing significant impacts on water quality at the receiving water bodies. In this study, the field investigation was done to check soil reconditioning status for potato, carrot, and cabbage at the Doam-dam watershed. With these data obtained from the field investigation, the Soil and Water Assesment Tool (SWAT) model was used to simulate the soil loss reduction with environment-friendly and agronomically enough soil reconditioning. The average soil reconditioning depth for potato was 34.3 cm, 48.3 cm for carrot, and 31.2 cm for cabbage at the Doam-dam watershed. These data were used for SWAT model runs. Before the SWAT simulation, the SWAT ArcView GIS Patch, developed by the Kangwon National University, was applied because of proper simulation of soil erosion and sediment yield at the sloping watershed, such as the Doam-dam watershed. With this patch applied, the Coefficient of Determination ($R^2$) value was 0.85 and the Nash-Sutcliffe Model Efficiency (EI) was 0.75 for flow calibration. The $R^2$ value was 0.87 and the EI was 0.85 for flow validation. For sediment simulation, the $R^2$ value was 0.91 and the EI was 0.70, indicating the SWAT model predicts the soil erosion processes and sediment yield at the Doam-dam watershed. With the calibrated and validated SWAT for the Doam-dam watershed, the soil erosion reduction was investigated for potato, carrot, and cabbage. For potato, around 19.3 cm of soil were over applied to the agricultural field, causing 146% of more soil erosion rate, approximately 33.3 cm, causing 146% of more soil erosion for carrot, and approximately 16.2 cm, causing 44% of more soil erosion. The results obtained in this study showed that excessive soil reconditioning are performed at the highland agricultural fields, causing severe muddy water issues and water quality degradation at the Doam-water watershed. The results can be used to develop soil reconditioning standard policy for various crops at the highland agricultural fields, without causing problems agronomically and environmentally.

Characteristics of Nonpoint Source Pollution and Relationship between Land Use and Nutrient Concentrations in the Han River Watershed (강우시 한강유역에서의 비점오염원 유출 특성과 토지이용도와의 관계)

  • Jung, Sungmin;Eum, Jaesung;Jang, Changwon;Choi, Youngsoon;Kim, Bomchul
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.255-268
    • /
    • 2012
  • Nonpoint source pollution has become a concern for water quality in the Han River system, especially during the high runoff events during the monsoon season. The patterns in nonpoint source runoff the relationships with land use, rainfall intensity, and stream nutrients concentrations were surveyed in 19 streams in the Han River watershed. The results show that the magnitude of NPS inputs of nutrients and sediment in the Han River watershed are of a serious concern. In the South Han River watershed, event mean concentrations (EMC) for biochemical oxygen demand (BOD), suspended sediment (SS), dissolved organic carbon (DOC), dissolved total phosphorus (DTP), total nitrogen (TN) Nitrate ($NO_3$-N) and total phosphorus (TP) were $1.94mg{\cdot}L^{-1},\;251mg{\cdot}L^{-1},\;2.75mg{\cdot}L^{-1},\;0.076mg{\cdot}L^{-1},\;2.82mg{\cdot}L^{-1},\;2.40mg{\cdot}L^{-1}$ and $0.232mg{\cdot}L^{-1}$, respectively. In the North Han River watershed, EMCs for BOD, SS, DOC, DTP, TN, $NO_3$-N and TP were $1.34mg{\cdot}L^{-1},\;172mg{\cdot}L^{-1},\;2.63mg{\cdot}L^{-1},\;0.032mg{\cdot}L^{-1},\;1.97mg{\cdot}L^{-1},\;1.55mg{\cdot}L^{-1}$ and $0.148mg{\cdot}L^{-1}$, respectively. The specific export coefficients of nutrient and sediments were much higher than those of other reports. Our study also found that the proportion of agricultural field area was significantly correlated with the EMCs for nutrients. Therefore, efforts to reduce NPS loading must focus on agricultural practices in the watershed. The relationships between land use and nutrient and sediment export found in this study can be used to derive estimates of runoff coefficients for agricultural field and as input data for modeling works and to develop total maximum daily load and best management practices in the Han River watershed.

Design of Optimum Volume of Sediment Settling Pond at Highland Agricultural Watershed Using WEPP Model (WEPP 모델을 이용한 고랭지밭 경사도별 침사지 적정용량 산정방법)

  • Hyun, Geun-Woo;Park, Sung-Bin;Park, Jeong-Hee;Geon, Sang-Ho;Choi, Jae-Wan;Kim, Ki-Sung;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.87-95
    • /
    • 2010
  • The optimum volume of sediment settling pond is determined by the maximum rainfall and surface peak rate runoff from crop field. Based on analysis of measured rainfall and runoff data, it was found that rainfall intensity of 2 mm/min would result in peak rate runoff from the agricultural field of study area. Optimum pond volume under various slope scenarios were determined using the WEPP model calibrated with measured flow and sediment data for the study watershed. For the agricultural field with the slope of 7 % and area of $2,600\;m^2$ at the study area, at least $6.4\;m^3$ of sediment settling pond is needed as shown in this study. The results presented in this study could be used as a guide in designing appropriate volume of sediment settling pond at highland agricultural areas because both very detailed field measurement and calibrated WEPP model results are used in the analysis.

A Study on the Estimation of Sediment Yield Based on a Distributed System Concept (분포형 개념을 이용한 토사유출량 산정에 관한 연구)

  • Kim, Ung-Tae;Yun, Yong-Nam;Park, Mu-Jong;Yu, Cheol-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.2
    • /
    • pp.131-140
    • /
    • 2001
  • The present study is focused on improving the methodology for the determination of parameters involved in USLE(Universal Soil Loss Equation) based on distributed system concept and investigation of sediment delivery ratio. Generally the distributed system concept consists of grid networks throughout the watershed and sediment can be traced from grid to rid in the direction of the steepest descent. The sediment yield data together with physical data of 10 small irrigation reservoirs in Kyounggi-Do are collected. After the sediment delivery ratio of a grid is defined to be related tothe fraction of forested or covered with delivery proofing area of the grid, the preportionality coefficient(C$_1$) is introduced. The distributed system model is calibrated using the available data for 8 reservoirs and is verified with the data for the ramaining 2 reservoirs, and regression analysis is made to express the proportionality coefficient $C_1$ in terms of watershed physical characteristics. By applying this results the verification of the distributed system model for 2 reservoirs showed a fair result, which justifies the applicability of the proposed method in the present study.

  • PDF

Estimation of Sediment Transport and Influence Factor for the Prediction of Riverbed Changes (하천유역의 유사량 산정 및 하상변동 예측을 위한 영향인자의 평가분석)

  • Yun, Se-Ui;Lee, Jong-Tae;Jeong, Jae-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.561-570
    • /
    • 1997
  • The feature of this paper is (1) to analyze the characteristics of rainfall-runoff relationship with kinematic wave theory, (2) to study the computational model to estimate the sediment yield, (3) to analyze the effects of bed change by transport formulas and the number of watershed division, and (4) to verify the model application with observation of channel data and measurement of rainfall, runoff, sediment discharge in Pyung-Chang River Basin. The calculated time of concentration of peak discharge occured little earlier than the actual, but the tendency of hydrograph coincided with observation. The shape of sediment hydrographs was similar to the water hydrograph. Based on above results, the applicability of the model was verified in detail. As the number of watershed division increased, the difference between the measured runoff and sediment values and the estimated ones decreased. The result of calculation with Yalin's formula for surface and Acker-White's one for channel gave the best agreement with the measured data among the six selected sediment transport foumulas.

  • PDF

Assessment of Future Climate Change Impact on Groundwater recharge, Baseflow and Sediment in Steep Sloping Watershed (미래 기후변화에 따른 급경사지 유역에서의 지하수 함양, 기저유출 및 토양유실 평가)

  • Lee, Ji Min;Jung, Younghun;Park, Younshik;Kang, Hyunwoo;Lim, Kyoung Jae;Kim, Hungsoo
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.173-185
    • /
    • 2014
  • Climate change has caused detrimental phenomena such as heavy rainfall which could aggravate soil erosion. Accordingly, it is needed to evaluate the groundwater recharge, baseflow, and soil erosion for the efficient management of water resources and quality. In this study, future climate change scenarios were applied to the H aean-myeon watershed which is a steep sloping watershed in South Korea to analyze groundwater recharge, baseflow, sediment. Also, the variation of groundwater recharge, baseflow, sediment was analyzed according to the change of slope (5 %). Simulated periods were divided into three terms (2013 ~ 2040 years, 2041 ~ 2070 years, 2071 ~ 2100 years). As a result of this study, average groundwater recharge and baseflow increased by 50 %, 42 %, and sediment decreased by 72 %, respectively. In these regards, the suggested method will positively contribute to hydro-ecosystem and reduction of muddy water at a steep sloping watershed.

Determination of Model Parameters of Surface Cover Materials in Evaluation of Sediment Reduction and Its Effects at Watershed Scale using SWAT (토양유실 저감을 위한 지표피복 저감효과 변수 결정 및 SWAT 모형 유역단위 효과 분석)

  • Kum, Donghyuk;Jang, Chun Hwa;Shin, Min Hwan;Choi, Joong-Dae;Kim, Bomchul;Jeong, Gyo-Cheol;Won, Chul Hee;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.923-932
    • /
    • 2012
  • The purpose of this study was to determine parameters of surface cover materials and evaluation the effects on runoff and sediment reductions with rice straw mat with PAM at watershed scale using the SWAT model. In this study, 1) regression equation of CN for rice straw mat + PAM using SCS curve number method was developed, 2) the USLE P factor, being able to reflect simulation of rice straw mat + PAM in the agricultural field, was estimated for various slope scenarios with VFSMOD-w. Then regression equation for CN and USLE P factor were used as input data in the SWAT model. Assuming rice straw mat + PAM is applied to radish and potato fields, occupying 24% of agricultural fields at the study watershed. Result of direct runoff without rice straw mat + PAM was $65,964,368\;m^3,$ with rice straw mat + PAM, direct runoff was $65,637,336\;m^3$, $327,031.8\;m^3$ reductions compared without it. Also, result of sediment without rice straw mat + PAM was 163,531 ton, with rice straw mat + PAM, sediment was 84,779 ton, 78,752 ton reduction compared without it. This analysis showed that about 48% sediment reductions would be expected with rice straw mat + PAM. As shown in this study, rice straw mat + PAM would be used as an efficient site-specific BMPs to reduce runoff and sediment discharge from field.

Development of a Hybrid Watershed Model STREAM: Model Structures and Theories (복합형 유역모델 STREAM의 개발(I): 모델 구조 및 이론)

  • Cho, Hong-Lae;Jeong, Euisang;Koo, Bhon Kyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.491-506
    • /
    • 2015
  • Distributed models represent watersheds using a network of numerous, uniform calculation units to provide spatially detailed and consistent evaluations across the watershed. However, these models have a disadvantage in general requiring a high computing cost. Semi-distributed models, on the other hand, delineate watersheds using a simplified network of non-uniform calculation units requiring a much lower computing cost than distributed models. Employing a simplified network of non-uniform units, however, semi-distributed models cannot but have limitations in spatially-consistent simulations of hydrogeochemical processes and are often not favoured for such a task as identifying critical source areas within a watershed. Aiming to overcome these shortcomings of both groups of models, a hybrid watershed model STREAM (Spatio-Temporal River-basin Ecohydrology Analysis Model) was developed in this study. Like a distributed model, STREAM divides a watershed into square grid cells of a same size each of which may have a different set of hydrogeochemical parameters reflecting the spatial heterogeneity. Like many semi-distributed models, STREAM groups individual cells of similar hydrogeochemical properties into representative cells for which real computations of the model are carried out. With this hybrid structure, STREAM requires a relatively small computational cost although it still keeps the critical advantage of distributed models.

Application of SWAT Model on Rivers in Jeju Island (제주도 하천에 대한 SWAT 모형의 적응)

  • Jung, Woo-Yul;Yang, Sung-Kee
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.1039-1052
    • /
    • 2008
  • The SWAT model developed by the USDA-Agricultural Research service for the prediction of rainfall run-off, sediment, and chemical yields in a basin was applied to Jeju Island watershed to estimate the amount of runoff. The research outcomes revealed that the estimated amount of runoff for the long term on 2 water-sheds showed fairly good performance by the long-term daily runoff simulation. The watershed of Chunmi river located the eastern region in Jeju Island, after calibrations of direct runoff data of 2 surveys, showed the similar values to the existing watershed average runoff rate as 22% of average direct runoff rate for the applied period. The watershed of Oaedo river located the northern region showed $R^2$ of 0.93, RMSE of 14.92 and ME of 0.70 as the result of calibrations by runoff data in the occurrence of 7 rainfalls.