• Title/Summary/Keyword: watershed sediment

Search Result 308, Processing Time 0.032 seconds

Predictive Equations for Deposits and Sediment Yields at Irrigation Reservoirs (관개용 저수지의 퇴사량과 유역 유사량 추정식)

  • 김진택;박승우;서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.104-115
    • /
    • 1993
  • The objectives of this paper were to develop predictive equations for reservoir deposits and watershed sediment yields based on sediment survey data for irrigation reservoirs. Hundred reservoirs of various sizes, which have the surveyed data for sediment deposits, were chosen and fourteen watershed physiological and hydrological parameters were investigated. Correlationships between watershed parameters and sediment deposits were investigated and a best fit regression equation was derived, which may be applied for estimating reservoir sediment deposits. The sediment deposits were converted to the watershed sediment yields by applying the trap efficiencies and specific weights. The resulting sediment yields were related to watershed parameters and an empirical predictive equation was also proposed that may be used for rough estimations of watershed sediment yields.

  • PDF

Analysis of Sediment Yields at Watershed Scale using Area/Slope-Based Sediment Delivery Ratio in SATEEC (SATEEC 시스템을 이용한 면적/경사도에 의한 유달률 산정 방법에 따른 유사량 분석)

  • Park, Younshik;Kim, Jonggun;Kim, Narnwon;Kim, Ki-sung;Choi, Joongdae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.650-658
    • /
    • 2007
  • The Universal Soil Loss Equation (USLE) has been used in over 100 countries to estimate potential long-term soil erosion from the field. However, the USLE estimated soil erosion cannot be used to estimate the sediment delivered to the stream networks. For an effective erosion control, it is necessary to compute sediment delivery ratio (SDR) for watershed and sediment yield at watershed outlet. Thus, the Sediment Assessment Tool for Effective Erosion Control (SATEEC) was developed to compute the sediment yield at any point in watershed. In this study, the SATEEC was applied to the Sudong watershed, Chuncheon Gangwon to compare the sediment yield using area-based sediment delivery ratio (SDRA) and slope-based sediment delivery ratio (SDRS) at watershed outlet. The sediment yield using the SDRA by Vanoni, SYA and the sediment yield using the SDRS by Willams and Berndt, SYS were compared for the same sized watersheds. The 19 subwatersheds was 2.19 ha in size, the soil loss and sediment yield were estimated for each subwatershed. Average slope of main stream was about 0.86~3.17%. Soil loss and sediment yield using SDRA and SDRS were distinguished depending on topography, especially in steep and flat areas. The SDRA for all subwatersheds was 0.762, however the SDRS were estimated in the range of 0.553~0.999. The difference between SYA and SYS was -79.74~27.45%. Thus site specific slope-based SDR is more effective in sediment yield estimation than area-based SDR. However it is recommended that watershed characteristic need to be considered in estimating yield behaviors.

Development of Sediment Assessment Tool for Effective Erosion Control (SATEEC) in Small Scale Watershed (소유역의 효과적인 침식조절을 위한 유사평가 툴(SATEEC)의 개발)

  • Kyoung-Jae Lim;Joong-Dae Choi;Ki-Sung Kim;Myung Sagong;Bernard A. Engel
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.5
    • /
    • pp.85-96
    • /
    • 2003
  • The Revised Universal Soil Loss Equation (RUSLE) has been used in over 100 countries to estimate potential long-term soil erosion from the field. However, the RUSLE estimated soil erosion cannot be used to estimate the sediment delivered to the stream networks. For an effective erosion control, it is necessary to compute sediment delivery ratio (SDR) for watershed and sediment yield at watershed outlet. Thus, the Sediment Assessment Tool for Effective Erosion Control (SATEEC) was developed in this study to compute the sediment yield at any point in the watershed. To compute spatially distributed sediment yield map, the RUSLE was first integrated with the ArcView GIS and three area based sediment delivery ratio methods were incorporated in the SATEEC. The SATEEC was applied to the Bangdong watershed, Chuncheon, Gangwon Province to demonstrate how it can be used to estimate soil loss and sediment yield for a watershed. The sediment yield using USDA SDR method is 8,544 ton/year and 4,949 ton/year with the method by Boyce. Thus, use of watershed specific SDR is highly recommended when comparing the estimated sediment yield with the measured sediment data. The SATEEC was applied with hypothetical cropping scenario and it was found that the SATEEC can be used to assess the impacts of different management on the sediment delivered to the stream networks and to find the sediment source areas for a reach of interest. The SATEEC is an efficient tool to find the best erosion control practices with its easy-to-use interface.

Evaluation and Estimation of Sediment Yield under Various Slope Scenarios at Jawoon-ri using WEPP Watershed Model (WEPP Watershed Version을 이용한 홍천군 자운리 농경지의 경사도에 따른 토양유실량 평가)

  • Choi, Jae-Wan;Lee, Jae-Woon;Lee, Yeoul-Jae;Hyun, Geun-Woo;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.693-697
    • /
    • 2009
  • Physically-based WEPP watershed version was applied to a watershed, located at Jawoon-ri, Gangwon with very detailed rainfall data, rather than daily rainfall data. Then it was validated with measured sediment data collected at the sediment settling ponds and through overland flow. The $R^2$ and the EI for runoff comparisons were 0.88 and 0.91, respectively. For sediment comparisons, the $R^2$ and the EI values were 0.95 and 0.91. Since the WEPP provides higher accuracies in predicting runoff and sediment yield from the study watershed, various slope scenarios (2%, 3%, 5.5%, 8%, 10%, 13%, 15%, 18%, 20%, 23%, 25%, 28%, 30%) were made and simulated sediment yield values were analyzed to develop appropriate soil erosion management practices. It was found that soil erosion increase linearly with increase in slope of the field in the watershed. However, the soil erosion increases dramatically with the slope of 20% or higher. Therefore special care should be taken for the agricultural field with higher slope of 20% or higher. As shown in this study, the WEPP watershed version is suitable model to predict soil erosion where torrential rainfall events are causing significant amount of soil loss from the field and it can also be used to develop site-specific best management practices.

  • PDF

The Effects of Hydrologic Characteristics on Sediment Discharge in Streams with Small and Medium Size Watersheds (중소유역의 수문학적 특성이 하천유사량에 미치는 영향)

  • 김활곤;서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.127-136
    • /
    • 1996
  • The purpose of this study is to provide with information for the water resources development and management in stream management planning, such as information on the sediment trensport, design of dam and water facilities, river improvement and flood plains management. The major results obtained from the field measurement and analysis of the watershed characteristics, hydraulic and sediment characteristics are as follows ; 1. The rating curve formulas obtained from the analysis of the hydraulic characteristics data collected are ; Q-=110.563 $(H-0.474)^2$ for 0.7m$(H-0.146)^2$ for 0.4m$Sr=aX{^2} {_1} X^{c}{_2}$, in the experimental watershed.

  • PDF

Evaluation of Effects on SWAT Simulated Hydrology and Sediment Behaviors of SWAT Watershed Delineation using SWAT ArcView GIS Extension Patch (SWAT ArcView GIS Extension Patch를 이용한 소유역 분할에 따른 수문 및 유사 거동에 미치는 영향 평가)

  • Heo, Sunggu;Kim, Namwon;Park, Younshik;Kim, Jonggun;Kim, Seong-joon;Ahn, Jaehun;Kim, Ki-sung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.147-155
    • /
    • 2008
  • Because of increased nonpoint source runoff potential at highland agricultural fields of Kangwon province, effective agricultural management practices are required to reduce the inflow of sediment and other nonpoint source pollutants into the water bodies. The watershed-scale model, Soil and Water Assessment Tool (SWAT), model has been used worldwide for developing effective watershed management. However, the SWAT model simulated sediment values are significantly affected by the number of subwatershed delineated. This result indicates that the SWAT estimated watershed characteristics from the watershed delineation process affects the soil erosion and sediment behaviors. However, most SWAT users do not spend time and efforts to analyze variations in sediment estimation due to watershed delineation with various threshold value although topography falsification affecting soil erosion process can be caused with watershed delineation processes. The SWAT model estimates the field slope length of Hydrologic Response Unit (HRU) based on average slope of subwatershed within the watershed. Thus the SWAT ArcView GIS Patch, developed by using the regression relationship between average watershed slope and field slope length, was utilized in this study to compare the simulated sediment from various watershed delineation scenarios. Four watershed delineation scenarios were made with various threshold values (700 ha, 300 ha, 100 ha, and 75 ha) and the SWAT estimated flow and sediment values were compared with and without applying the SWAT ArcView GIS Patch. With the SWAT ArcView GIS Patch applied, the simulated flow values are almost same irrespective of the number of subwatershed delineated while the simulated flow values changes to some extent without the SWAT ArcView GIS Patch applied. However when the SWAT ArcView GIS Patch applied, the simulated sediment values vary 9.7% to 29.8% with four watershed delineation scenarios, while the simulated sediment values vary 0.5% to 126.6% without SWAT ArcView GIS applied. As shown, the SWAT estimated flow and sediment values are not affected by the number of watershed delineation significant compared with the estimated flow and sediment value without applying the SWAT ArcView GIS Patch.

Developing Suspended Sediment Delivery Ratio in the Lake Imha Watershed (임하호유역 유사유달공식 개발)

  • Jeon, Ji-Hong;Choi, Donghyuk;Kim, Jae-Kwon;Kim, Taedong
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.744-753
    • /
    • 2017
  • The sediment delivery ratio (SDR) is widely used to estimate sediment loads by multiplying soil loss through the Revised Universal Equation (RUSLE). In this study, the SDR equation was developed for the Lake Imha watershed using soil loss calculated by RUSLE and sediment loads by the calibrated Hydrological Simulation. Program Fortran (HSPF). The ratio of watershed relief and channel length ($R_f/L_{ch}$), the ratio of watershed relief and watershed length ($R_f/L_b$), curve number (CN), area (A), and channel slope ($SLP_{ch}$) demonstrated strong correlations with SDR. SDR equations were developed by a combination of subwatershed parameters by referring to the correlation analysis. The area based power functional SDR developed in this study showed significant errors at the point right after entering major tributaries, because SDR was unrealistically reduced when the watershed area increased significantly. The $SLP_{ch}$-based power functional SDR also showed extraordinary values when the channel slope was gradual. The SDR equation that showed the highest value of the coefficient of determination also presented unrealistic changes in the sediment loads within a relatively short river distance. The SDR equation $SDR=0.0003A^{0.198}R_f/L{_w}^{1.167}$ was recommended for application to the Lake Imha watershed. Using this equation, sediment loads at the outlet of the Lake Imha watershed were calculated, and the HSPF parameters related to sediment in the uncalibrated subwatersheds were determined by referring to the sediment loads calculated with the SDR equation.

Modeling of sediment and nutrients loadings from the Soyang Dam upstream watershed with SWAT (SWAT 모형을 이용한 소양강댐 유역의 비점오염 모델링)

  • Kim, Chul-Gyum;Kim, Nam-Won;Lee, Jeong-Eun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.288-293
    • /
    • 2005
  • In this study, SWAT model was applied to the Soyang Dam upstream watershed in order to evaluate the model applicability for estimating runoff, sediment, and nutrients loadings from the watershed. By trial and error method, the model parameters related with runoff, sediment, nitrogen and phosphorus were calibrated step by step. Then the simulated runoff, sediment, and nutrients loadings by the model were compared with the observed data measured at the Soyang Dam, the outlet of the watershed. And several statistical criteria were calculated to evaluate the model performance. From the comparison and statistical criteria, good agreement between simulated and observed stream flows was found. For sediment and nutrients, it was not reliable to quantitatively model the observed values, but the model could simulate the trend with reasonable accuracy. Hence, it was concluded that the model can be applied for the long-term non-point modeling in a large watershed.

  • PDF

Estimation of the Forestry Area Decrease Effect on the Soil Erosion in Rural Watershed (농촌유역의 산림지 면적 감소에 따른 유역 토양유실량 변화 추정)

  • Kim, Sang-Min;Im, Sang-Jun;Park, Seung-Woo
    • Journal of Korean Society of Rural Planning
    • /
    • v.10 no.1 s.22
    • /
    • pp.19-26
    • /
    • 2004
  • In this paper, forestry area change effect on the soil erosion in Asan lake watershed was estimated. Temporal variations of land use in the study watershed were analyzed from Landsat-5 TM remote sensing images. Geographic Information System (GIS) combined with Universal Soil Loss Equation (USLE) was used to estimate the soil erosion of Asan lake watershed. Spatial data for each USLE factors was obtained from the Landsat-5 TM remote sensing images and 1/25,000 scale digital contour maps. Sediment yield to Asan lake was estimated by sediment delivery ratio and sediment accumulation in lake was estimated by trap efficiency. The estimation methods were validated for sediment accumulation in Asan lake. From the hydrographic survey from 1974 to 2003 for Asan lake, sediment accumulation was measured. The estimated accumulation sediment of 303,569ton/yr showed similar value with observed of 295,888ton/yr. From the validated estimation methods, the increasing amount of soil erosion when 1% of forest area in Asan lake watershed decreases was calculated from 12.91 to 1482.05ton/yr.

Digital simulation model for soil erosion and Sediment Yield from Small Agricultural Watersheds(I) (농업 소류역으로부터의 토양침식 및 유사량 시산을 위한 전산모의 모델 (I))

  • 권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.4
    • /
    • pp.108-114
    • /
    • 1980
  • A deterministic conceptual erosion model which simulates detachment, entrainment, transport and deposition of eroded soil particles by rainfall impact and flowing water is presented. Both upland and channel phases of sediment yield are incorporated into the erosion model. The algorithms for the soil erosion and sedimentation processes including land and crop management effects are taken from the literature and then solved using a digital computer. The erosion model is used in conjunction with the modified Kentucky Watershed Model which simulates the hydrologic characteristics from watershed data. The two models are linked together by using the appropriate computer code. Calibrations for both the watershed and erosion model parameters are made by comparing the simulated results with actual field measurements in the Four Mile Creek watershed near Traer, Iowa using 1976 and 1977 water year data. Two water years, 1970 and 1978 are used as test years for model verification. There is good agreement between the mean daily simulated and recorded streamflow and between the simulated and recorded suspended sediment load except few partial differences. The following conclusions were drawn from the results after testing the watershed and erosion model. 1. The watershed and erosion model is a deterministic lumped parameter model, and is capable of simulating the daily mean streamflow and suspended sediment load within a 20 percent error, when the correct watershed and erosion parameters are supplied. 2. It is found that soil erosion is sensitive to errors in simulation of occurrence and intensity of precipitation and of overland flow. Therefore, representative precipitation data and a watershed model which provides an accurate simulation of soil moisture and resulting overland flow are essential for the accurate simulation of soil erosion and subsequent sediment transport prediction. 3. Erroneous prediction of snowmelt in terms of time and magnitute in conjunction with The frozen ground could be the reason for the poor simulation of streamflow as well as sediment yield in the snowmelt period. More elaborate and accurate snowmelt submodels will greatly improve accuracy. 4. Poor simulation results can be attributed to deficiencies in erosion model and to errors in the observed data such as the recorded daily streamflow and the sediment concentration. 5. Crop management and tillage operations are two major factors that have a great effect on soil erosion simulation. The erosion model attempts to evaluate the impact of crop management and tillage effects on sediment production. These effects on sediment yield appear to be somewhat equivalent to the effect of overland flow. 6. Application and testing of the watershed and erosion model on watersheds in a variety of regions with different soils and meteorological characteristics may be recommended to verify its general applicability and to detact the deficiencies of the model. Futhermore, by further modification and expansion with additional data, the watershed and erosion model developed through this study can be used as a planning tool for watershed management and for solving agricultural non-point pollution problems.

  • PDF