• 제목/요약/키워드: water-tube

Search Result 1,459, Processing Time 0.024 seconds

Basic Study on the IoT Micro Boiler (IoT 마이크로 보일러에 대한 기초 연구)

  • Jang, Sung-Cheol
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • The product to be developed in this study is a heat recovery device which generates steam or hot water at high temperature and high pressure by heating water using exhaust gas from diesel engine, gas engine, gas turbine, etc. as an exhaust gas boiler off heat boiler(EGB) type for ship and power generation. The steam vapor or the created warm water is used as the power source required for the steerage heating and hot water facility or the HFO heating of the ship, and the turbine drive. The principle of waste heat boilers serves to heat water as high temperature exhaust gas with heat pass through the tube of the boiler. The heated water is a structure that is sent to a cabin or turbine device in the form of steam. In this study, the objective of this study is to maximize the efficiency by increasing the heat transfer surface by replacing the tube which is the heat transfer part of EGB with the plate tube.

A Study on the Shape and Cone Resistance of Dredged Fill in Geotextile Tube under Water and Drained Conditions (준설토의 퇴적형상과 수침조건에 따른 토목섬유 튜브 내 준설토의 콘 저항치에 관한 연구)

  • Kim, Hyeong Joo;Won, Myoung Soo;Lee, Jang Baek;Kim, Young Shin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.85-96
    • /
    • 2016
  • A series of tests were conducted to examine the filled tube shape with respect to the filling module type used and to investigate cone resistance properties of a dredged-soil-filled geotextile tube under water and drained conditions. Results based on the filling observation showed that the distribution of the accumulated fills inside the acrylic cell and vinyl tubes differs with respect to the type of filling modules. A crater formation around the inlet area was found during the test using I-type filling module and a horizontal sediment distribution was found during the test using inverse T-Type filling module. The dredged fill material was obtained from the Saemangeum area. The geotextile tube deformation of each filling stage was almost converged when the tube was fully drained. The cone resistance of the dredged fill in the geotextile tube under drained condition is large and is approximately 2~6 times that of the tube under water condition.

MEASUREMENT OF THE SINGLE AND TWO PHASE FLOW USING A NEWLY DEVELOPED AVERAGE BIDIRECTIONAL FLOW TUBE

  • Yun, Byong-Jo;Euh, Dong-Jin;Kang, Kyunc-Ho;Song, Chul-Hwa;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.595-604
    • /
    • 2005
  • A new instrument, an average BDFT (Birectional Flow Tube), was proposed to measure the flow rate in single and two phase flows. Its working principle is similar to that of the Pilot tube, wherein the dynamic pressure is measured. In an average BDFT, the pressure measured at the front of the flow tube is equal to the total pressure, while that measured at the rear tube is slightly less than the static pressure of the flow field due to the suction effect downstream. The proposed instrument was tested in air/water vertical and horizontal test sections with an inner diameter of 0.08m. The tests were performed primarily in single phase water and air flow conditions to obtain the amplification factor(k) of the flow tube in the vertical and horizontal test sections. Tests were also performed in air/water vertical two phase flow conditions in which the flow regimes were bubbly, slug, and churn turbulent flows. In order to calculate the phasic mass flow rates from the measured differential pressure, the Chexal drift-flux correlation and a momentum exchange factor between the two phases were introduced. The test results show that the proposed instrument with a combination of the measured void fraction, Chexal drift-flux correlation, and Bosio & Malnes' momentum exchange model could predict the phasic mass flow rates within a $15\%$ error. A new momentum exchange model was also proposed from the present data and its implementation provides a $5\%$ improvement to the measured mass flow rate when compared to that with the Bosio & Malnes' model.

Development of 3th Effects Evaporative desalination system for Solar Desalination System (태양에너지 해수담수화를 위한 3중 효용 증발식 담수기 개발)

  • Hwang, In-Seon;Joo, Hong-Jin;Yun, Eung-Sang;Kwak, Hee-Youl
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.201-201
    • /
    • 2010
  • The evaporative desalination system with solar energy would be the efficient and attractive method to get fresh water. This study was described the development of Multi Effect Distillation(MED) with solar energy desalination system. The system was designed and manufactured Multi effect distillation on the capacity of $3m^3$/day. The experimental apparatus consists mainly of ejector pump, Hot water pump, flow meter, demister, cooler, evaporator and condenser. Evaporator and condenser were made Shell&Tube Heat Exchanger type with corrugated tube. The experimental variables were chosen $75^{\circ}C$ for hot water inlet temperature, 40, 60 and $80{\ell}$/min for hot water inlet volume flow rate, 6.0 and $8.0{\ell}$/min for evaporator feed seawater flow rate, $18^{\circ}C$ for sea water inlet temperature to cover the average sea water temperature and the salinity of sea water is measured about 33,000 PPM (parts per million). for a year in Korea. This study was analyzed the results of thermal performance of Multi Effect Distillation. The results are as follows, The experimental Multi effect distillation is required about 40 kW heat source for production of $3m^3$/day fresh water. Various operating flow rate was confirm in the experiments to get the optimum design data and the results showed that the optimum total flow was $8.0{\ell}$/min. Comparison of Single Effect Distillation with Multi Effect Distillation showed MED is at least more than double of SED.

  • PDF

Distribution of Air-Water Two-Phase Flow in a Flat Tube Heat Exchanger (평판관 열교환기 내 공기-물 2상류 분지)

  • Kim, Nae-Hyun;Park, Tae-Gyun;Han, Sung-Pil;Shin, Tae-Ryong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.9
    • /
    • pp.687-697
    • /
    • 2006
  • The air and water flow distribution are experimentally studied for a heat exchanger composed of round headers and 10 flat tubes. The effects of tube protrusion depth as well as mass flux, and quality are investigated, and the results are compared with the previous 30 channel results. The flow at the header inlet is annular. For the downward flow configuration, the water flow distribution is significantly affected by the tube protrusion depth. For flush-mounted geometry, significant portion of the water flows through frontal part of the header. As the protrusion depth increases, more water is forced to the rear part of the header. The effect of mass flux or quality is qualitatively the same as that of the protrusion depth. Increase of the mass flux or quality forces the water to rear part of the header. For the upward flow configuration, different from the downward configuration, significant portion of the water flows through the rear part of the header. The effect of the protrusion depth is the same as that of the downward flow. As the protrusion depth increases, more water is forced to the rear part of the header. However, the effect of mass flux or quality is opposite to the downward flow case. As the mass flux or quality increases, more water flows through the frontal part of the header. Compared with the previous thirty channel configuration, the present ten channel configuration yields better flow distribution. Possible explanation is provided from the flow visualization results.

A Study on Heat and Mass Transfer in a Vertical Tube Absorber Using LiBr Family Solutions (LiBr계 용액을 사용한 수직관 흡수기의 열 및 물질 전달에 관한 연구)

  • Cho, H.C.;Kim, C.B.;Jeong, S.Y.;Kang, S.W.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.196-206
    • /
    • 1995
  • Experimental investigations on heat and mass transfer characteristics in a vertical tube absorber have been carried out. Three different copper tubes with a length of 1.5m have been tested using LiBr solution and LiBr-$CaCl_2$ solution. The effects of solution flow rate, cooling water temperature, solution inlet temperature and evaporation temperature have been investigated in detail. It is found that heat transfer coefficient increases gradually with the increase of solution flow rate, but decreases rapidly for the flow rates less than 0.02kg/ms. The grooved tube generally shows better heat transfer performances than the smooth tube. LiBr solution shows almost no absorption capability for the cooling water temperatures over $40^{\circ}C$. LiBr-$CaCl_2$ gives less decreasing rate in absorption capability at these temperatures and the heat transfer coefficient becomes less dependent on the types of tubes in use. Considering heat and mass transfer rates, LiBr-$CaCl_2$ solution is found to be more suitable than LiBr solution for air cooled absorber, which operates at higher temperature than water cooled absorber.

  • PDF

Flow Condensation Heat Transfer Coefficients of R22 Alternative Refrigerants in Plain and Microfin Tubes of 6.0 mm Inside Diameter (내경 6 mm 평관과 마이크로 핀관 내에서 R22 대체냉매의 흐름응축 열전달계수)

  • 박기호;서영호;박기정;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.444-451
    • /
    • 2004
  • Flow condensation heat transfer coefficients (HTCs) of R22, R134a, R407C, and R410A were measured on horizontal plain and microfin tubes. The experimental apparatus was composed of three main parts; a refrigerant loop, a water loop and a water/glycol loop. The test section in the refrigerant loop was made of both a plain and a microfin copper tube of 6.0∼6.16 mm inside diameter and 1.0 m length. Refrigerants were cooled by passing cold water through an annulus surrounding the test section. Tests were performed at a fixed refrigerant saturation temperature of 4$0^{\circ}C$ with mass fluxes of 100, 200, and 300 kg/m2s. Test results showed that at similar mass flux the flow condensation HTCs of R134a were similar to those of R22 for both plain and microfin tubes. On the other hand, HTCs of R407C were lower than those of R22 by 4∼16% and 16∼42% for plain and microfin tubes respectively. And HTCs of R410A were similar to those of R22 for a plain tube but lower than those of R22 by 3∼9% for a microfin tube. Heat transfer enhancement factors of a microfin tube were 1.3∼1.9.

A Study on Self Supporting Air Tube Blasting Method in Water Hole (수공에서 자립형 수중용 에어튜브 발파공법에 관한 연구)

  • Kang, Dae-Woo;Lee, Shin
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.28-36
    • /
    • 2010
  • A study about economical blasting methods which can improve fragmentation and save explosive in blasting is in progress. One of the blasting methods is an air decking method making air layers in boreholes. However, it is difficult to apply this method to the boreholes filled with water. In this study, an underwater Air Tube was manufactured and tried to place it at a certain location in a water filled borehole. It was found that the application of underwater air tube in wet boreholes could improve the fragmentation and save 10~15% of the explosives.

A Study on the Effect of the Inclined Structure on the Hydraulic Behavior Index within Sedimentation basin (경사 구조물이 침전지내 수리거동 Index에 미치는 영향)

  • Lim, Seong-Ho;Hwang, Jun-Sik;Park, No-Suk;Kim, Seong-Su;Lim, Kyung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.517-526
    • /
    • 2009
  • This research has been conducted to investigate the characteristics of hydraulic behavior within the PAC contactor, the rectangular shape sedimentation basin without inclined tube and the other one with inclined tube those are parts of demonstration plants(capacity : $2,000m^3/d$) in Korea Institute of Water and Environment. As results of tracer tests, the flow within PAC contactor was evaluated to divided into plug flow and dead space distinctly, and characteristics of dead space was close to that of CSTR(Complete/continuous Stirred Tank Reactor). Also, considering Reynolds number, Froude number, Morill, Modal, NCSTR Inex and plug flow/mixed flow fraction, in the case of the rectangular shape sedimentation basin without inclined tube, the characteristics of flow pattern was close to CSTR. On the other hand, in the case of the basin with inclined tube, the region of CSTR decreased precisely compared with the case of no-tube. Until now we have recognized that the inclined hydraulic structure just reduces the surface loading rate within a sedimentation basin. Actually besides, the inclined structure have an important effect on the hydraulic behavior within the basin.

Study on the Characteristics of Erosion-Corrosion for Heat Exchanger of Shell and Tube Type(I) (원통다관형 열교환기의 침식-부식 특성에 관한 연구 (I))

  • 임우조;정해규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.2
    • /
    • pp.196-200
    • /
    • 1999
  • In the case that erosion and corrosion occurs in machinery and structure at the same time, the synergy effect by erosion-corrosion affects fatal effect to durability of machinery and structure. Therefore, in machinery and structure which use corrosion liquid, the study of the synergy effect of erosion-corrosion which affects metal material is requested. In this paper. the flow corrosion experiment about the effect of temperature change and liquid velocity change in sea water was carried out to study the characteristics of erosion-corrosion for tube material Cu heat exchanger The main results obtained are as follows. (1) Damage appearance of tube outside by erosion-corrosion becomes dull because electrode potentials of Cu tube is higher than electrode potential of STPG38 shell. (2) In the cooling system by sea water, the weight loss rate of Cu at tube outside liquid temperature of $70^{\circ}C$ is higher than that of temperature of $20^{\circ}C$. (3) In cooling system by sea water, the weight loss rate of Cu at liquid velocity of 5.1m/s is higher than that of velocity of 1.47m/s. But as the testing time passed, the weight loss rate of Cu at velocity of 5.1m/s is almost steady and becomes dull at velocity of 1.47m/s.

  • PDF