• Title/Summary/Keyword: water-quality monitoring

Search Result 1,054, Processing Time 0.034 seconds

Impacts of Uncertainty of Water Quality Data on Wate Quality Management (수질자료의 불확실성이 수질관리에 미치는 영향)

  • Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.427-430
    • /
    • 2006
  • Uncertainty is one of the key issues of the water quality management. Uncertainty occurs in the course of all water quality management stages including monitoring, modeling, and regulation enforcement. To reduce uncertainties of water quality monitoring, manualized monitoring methodology should be developed and implemented. In addition, long-term monitoring is essential for acquiring reliable water quality data which enables best water quality management. For the water quality management in the watershed scale, fate of pollutant including its generation, transport and impact should be considered while regarding each stage of water quality management as an unit process. Uncertainties of each stage of water quality management should be treated properly to prevent error propagation transferred to the next stage of management for successful achievement of water quality conservation.

Water Quality Monitoring for Corrosion Control in Waterworks System (상수도관망 시스템의 부식제어를 위한 수질모니터링)

  • Lee, Hyun-Dong;Kwak, Phill-Jae;Lee, Ji-Eun;Kim, Yeong-Kwan;Han, Myung-Ho;Park, Young-Suk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.77-87
    • /
    • 2009
  • In existing systems, the best method inhibiting corrosion control in water distribution systems is to reduce water corrosiveness. Water corrosion can be decreased by controlling water quality through simple water treatment in treatment plants. On this research, we study the characteristics of tab water qualities in domestic areas, assessment of corrosive water quality and the method of water quality monitoring. This review presents the method of water quality monitoring which is the most applicable. Monitoring for corrosion control in waterworks system is the most proper method; It can prevent serious accidents economically and reduce civil appeals. Surely we should assess corrosive water quality in tab water, and introduce water treatment methods to control corrosive water quality before monitoring for corrosion. According to a lot of researches, it has been proved that simple water treatments can reduce the pipe corrosion. In this review we should indicate that we do not control of the corrosive water quality due to domestic conditions, we should monitor the water quality basically. Therefore, we recognize how the existing water quality can cause problems on pipeline corrosion, how to deal with it. Then it will be possible to apply water quality monitoring for corrosion control in water distribution system. Monitoring for corrosion control can be expressed by LI index, it is already known in literatures. This review presents more simple method than existing methods than existing ones we expect to apply these methods to SCADA in the future.

Water Quality Similarity Evaluation in Geum River Using Water Quality Monitoring Network Data (물환경측정망 자료를 활용한 금강수계 수질 유사도 평가)

  • Kim, Jeehyun;Chae, Minhee;Yoon, Johee;Seok, Kwangseol
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.2
    • /
    • pp.75-88
    • /
    • 2021
  • Six locations in the automated monitoring network at the Geum River Basin were selected forthis study. The water quality characteristics at two of the locations in the water quality monitoring network that were identical, or nearby, were examined, and their correlations were evaluated through statistical analysis. The results of the water quality analysis were converted to the water quality index and expressed in grades for comparison. For the data necessary for the study, public data from four years, from 2016-2019 were used and the evaluation parameters were water temperature, pH, EC, DO, TOC, TN, and TP. Results of the analysis showed that the water quality concentrations measured in the automated monitoring network and the water quality monitoring network differed in some measured values, but they tended to register variation in a specified ratio in most of the locations in the network. The analysis of the correlations of the parameters between the two monitoring networks found that water temperature, EC, and DO showed high correlations between the two monitoring networks. The TOC, TN, and TP showed high correlations, with a 0.7 or higher (correlation coefficient r), with the exception of some of the monitoring networks, although their correlations were lower than those of the basic parameters. The water quality index analysis showed that the water quality index values of the automated monitoring network and the water quality monitoring network were similar. The water quality index decreased and the pollution degree increased in the downstream direction, in both networks.

Design of a Water Quality Monitoring Network in the Nakdong River using the Genetic Algorithm (유전자 알고리즘을 이용한 낙동강 유역의 수질 측정망 설계에 관한 연구)

  • Park, Su-Young;Wang, Sookyun;Choi, Jung Hyun;Park, Seok Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.697-704
    • /
    • 2007
  • This study proposes an integrated technique of Genetic Algorishim (GA) and Geographic Information System (GIS) for designing the water quality monitoring networks. To develop solution scheme of the integrated system, fitness functions are defined by the linear combination of five criteria which stand for the operation objectives of water quality monitoring stations. The criteria include representativeness of a river system, compliance with water quality standards, supervision of water use, surveillance of pollution sources and examination of water quality changes. The fitness level is obtained through calculations of the fitness functions and input data from GIS. To find the most appropriate parameters for the problems, the sensitivity analysis is performed for four parameters such as number of generations, population sizes, probability of crossover, and probability of mutation. Using the parameters resulted from the sensitivity analysis, the developed system proposed 110 water quality monitoring stations in the Nakdong River. This study demonstrates that the integrated technique of GA and GIS can be utilized as a decision supporting tool in optimized design for a water quality monitoring network.

Monitoring of Distribution System to Improve Tap Water Quality (수돗물 수질개선을 위한 배수관망시스템 관리 정책 - 수질모니터링을 중심으로 -)

  • Jun, Jesang;Kim, Jakyum
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.411-420
    • /
    • 2005
  • Maintaining a good quality of drinking water produced through appropriate water treatment processes to the tap is as important as improving water quality in a water treatment plant (WTP). The quality of most tap water, however, does not have the same quality as that of the water produced in a WTP due to the contamination in the distribution system while they are delivered through pipes and water tanks. It is very important to maintain water quality in distribution system to water suppliers for consumer's health and safety. Furthermore, it is not possible to investigate the water quality of all points in the distribution system because the system has a wide area and very complex hydraulic characteristics. One economic solution to prevent water quality in distribution system from being deteriorated is monitoring several points that might have the least water quality in the distribution system. If the quality of water of the monitoring points selected by proper ways is better than the quality index of Drinking Water Quality Guidelines suggested by Korean Ministry of Environment, all other points in the distribution system would be safe to drink.

Water Quality Analysis in Nakdong River Tributaries Using 2012-2016 Monitoring Data (2012-2016년 모니터링 자료를 이용한 낙동강 지류·지천 수질 특성 분석)

  • Son, Younggyu;Na, Seungmin;Im, Tae Hyo;Kim, Sang-hun
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.680-688
    • /
    • 2017
  • Water quality monitoring for flow rates and BOD/COD/T-N/T-P/SS/TOC concentrations has been conducted in Nakdong river tributaries since 2011. In this study concentrations and loading rates of BOD, T-P, and TOC were analyzed to evaluate water quality monitoring stations using accumulated data at 206 tributary monitoring stations in Nakdong river 2012 ~ 2016. Average concentration ranges for 206 monitoring stations were 0.3 ~ 6.4 mg/L, 0.025 ~ 1.562 mg/L, and 0.6 ~ 10.7 mg/L for BOD, T-P, and TOC, respectively. Additionally, average loading rate ranges were 0.96 ~ 46,040 kg/d, 0.087 ~ 1,834 kg/d, and 1.51 ~ 80,425 kg/d for BOD, T-P, and TOC, respectively. Average concentration for BOD, T-P, and TOC at each monitoring station was evaluated using ambient water quality standards of rivers and water quality regulation level for medium-sized management areas. Average loading rate and specific loading rate (loading rate/drainage basin area) for BOD, T-P, and TOC at each monitoring station was considered to evaluate monitoring stations using suggested classification (BOD, TOC: -1, 1 ~ 10, 10 ~ 100, 100 ~ 1,000, and 1,000 ~ kg/d; T-P: -0.1. 0.1 ~ 1, 1 ~ 10, 10 ~ 100, and 100 ~ kg/d) Using results of this study, various water quality status maps were provided, and three evaluation methods were suggested to determine priority monitoring stations in Nakdong river for rational water quality control and tributaries basin management.

A Real Time Monitoring for Water Quality of River (수질자동모니터링시스템의 설치 현황과 전망)

  • Ryu, Jae-Kuen
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • Water quality is monitored at 1,837 points which are streams and sources for water supply in Karea. The monitoring carry out the measurement of 16 parameters of pH, BOD, SS, DO and so on with once a month, and of other parameters such like heavy metal with once a quarter. But most of the monitoring is carried out uncontinuously, so it is very difficult to understand exactly the changes of water quality compared with continuous monitoring. Therefore, real time monitoring system was equipped with basic parameters such as pH, temperature, DO, turbidity and electric conductivity at 25 major sources of water supply after installation of Noryangjin and Dukdo in 1974. But the systems have some problems which cannot be considered the sampling sites to represent for water quality of stream of lake, and can be caused a change of water quality by long distance from analyzer to intake pipe. Therefore, it has carefully to evaluate selection of sample sites for real time monitoring system. Also, problems on the area has been to identify which parameters are best suited to monitoring stream of lake water and the differences, of analyzing results compared with manual analyzing. This paper presents some approaches to handle such problems, namely selection of sampling site and measurable parameters, to connect with bio-monitoring system solving a Limitation of measurable parameters, The bio-monitoring system of an early alarm that is desirable to perceive a toxic material inflow into stream can be applied to continuos water quality monitoring system effectively. Also, this paper presents to build a on line system transmitting immediately from a mobile analyzer house or container to main monitoring center the results of analyzer by a telemeter.

Monitoring and Analysis of Nutrients in Sediments in the Riverbed (하천 퇴적물의 영양염류 모니터링)

  • Kim, Geonha;Jung, Woohyeok;Lee, Junbae
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.838-845
    • /
    • 2006
  • Characterization of sediment in the riverbed is of importance for effective water quality management, yet have not been monitored sufficiently. This paper reports monitoring results of nutrient concentrations of sediments. Surface waters and sediments were sampled four times during rainy season at five monitoring points. Organics of overlying water were increased after high flow condition followed by decreasing tendencies. Soluble phosphorus fraction among total phosphorus was increased after high flow condition while total phosphorus was in decreasing tendencies. Monitoring result suggested that more extended monitoring scheme for flow rate, scouring velocity, and suspended material is required for analyzing relationship between water quality and sediment.

The Systematic Management for Trace Hazard Compounds in Drinking Water (수돗물에서 미량유해물질의 체계적 관리방안 연구)

  • Park, Sun-Ku;Rim, Yeon-Taek
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.431-441
    • /
    • 2005
  • The study was carried out to improve and regulate the drinking water quality standard and drinking water quality monitoring substances. For the reliability and safety of finished water, It has been monitored for trace organic and inorganic compounds of 333 in finished water of water treatment plants during 1989 to 2003. As a result of monitoring, 51 compounds were detected from 333 compounds, and it has been regulated the drinking water quality standard of 26 substances and 20 mitoring substance. Improvement and regulation method of the drinking water quality standard was performed by comparing and analyzing with detection concentration, detection frequency, risk assessment and foreign drinking water quality standard.

Implementations of Remote Sensing, GIS, and GPS for Water Resources and Water Quality Monitoring

  • Wu, Mu-Lin;Chen, Chiou-Hsiung;Liu, Shiu-Feng;Wey, Jiun-Sheng
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1191-1193
    • /
    • 2003
  • Water quantity and quality monitoring at Taipei Watershed Management Bureau (WRATB) is not only a daily business but also a long term job. WRATB is responsible for providing high quality drinking water to about four millions population in Taipei. The quality of drinking water provided by WRATB is among one of the best in Taiwan. The total area is 717 square kilometers. The water resource pollution is usually divided into two categories, point source pollution and nonpoint source pollution. Garbage disposal is the most important component of the point source pollution, especially those by tourist during holidays and weekends. Pesticide pollution, fertilizer pollution, and natural pollution are the major contributions for nonpoint source pollution. The objective of this paper is to implement remote sensing, geographic information systems, and global positioning systems to monitor water quantity and water quality at WRATB. There are 12 water quality monitoring stations and four water gauge stations at WRATB. The coordinates of the 16 stations were determined by GPS devices and created into the base maps. MapObjects and visual BASIC were implemented to create application modules for water quality and quantity monitoring. Water quality of the two major watersheds at WRATB was put on Internet for public review monthly. The GIS software, ArcIMS, can put location maps and attributes of all 16 stations on Internet for general public review and technical implementations at WRATB. Inquiry and statistic charts automatic manipulations for the past 18 years are also available. Garbage disposal by community and tourist were also managed by GIS and GPS. The storage, collection, and transportation of garbage were reviewed by ArcMap file format. All garbage cart and garbage can at WRATB can be displayed on the base maps. Garbage disposal by tourist during holidays and weekends can be managed by a PDA with a GPS device and a digital camera. Man power allocation for tourist garbage disposal management can be done in an integration of GIS and GPS. Monitoring of water quality and quantity at WRATB can be done on Internet and by a PDA.

  • PDF