• Title/Summary/Keyword: water treatment sludge

Search Result 635, Processing Time 0.027 seconds

Research of Sludge Quantity and Evaluation of Sludge Handling Facilities in Water Treatment Plants (정수 슬러지 발생량 조사 및 슬러지 처리시설의 공정평가)

  • Moon, Seong-Yong;Kim, Seung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.279-290
    • /
    • 2004
  • Sludge quantity has increased at "A"water treatment plant due to deterioration of raw water quality and GAC installation. Increased sludge resulted in overloading on sludge handling facilities. The object of this study is to survey sludge quantity and capacity of sludge handling facilities at "A"water treatment plant. Measured quantity of sedimentation sludge considerably exceeded the design capacity of sludge holding basin. Sludge holding basin was properly designed, but low concentration of sludge discharged from sedimentation basin caused production of large volume of the sludge. Timer operated control system for sludge withdrawal unit and leakage through a control valve were suspected to cause the low concentration. Augmentation of the control system by a turbidity meter and addition of a new control valve successfully reduced the sludge volume enough to satisfy the design capacity of sludge holding basin. Unlike sedimentation sludge, measured quantity of washwater was considerably less than the design capacity of washwater basin because it was over-designed.

Development of the Sludge Treatment System in Water Bath of Painting Booth (도장부스 수조 내 슬러지 처리 시스템의 개발)

  • Lee, Chan;Cha, Sang-Won;Yoo, Young-Don
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.1 s.28
    • /
    • pp.30-36
    • /
    • 2005
  • A sludge treatment system for introducing the waste water mixture with paint sludge from the water bath of paint booth and for recycling cleaned water to paint booth after sludge separation is developed. Floated sludge is introduced from the water surface in the bath by using floating-skimmer, and is conveyed by pump to the centrifugal separator where sludge and cleaned water are separated. From the operation results of the present sludge treatment systems applied in actual paint booths, paint sludge can be separated automatically and effectively from water bath with its water content of $60-70\%$, and sludge-free clean water is returned to paint booth.

Development of the Sludge Treatment System in Water Bath of Painting Booth (도장부스 수조 내 슬러지 처리 시스템의 개발)

  • Lee, Chan;Cha, Sang Won;Yoo, Young Don
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.259-266
    • /
    • 2004
  • Developed is a sludge treatment system for introducing the waste water mixture with paint sludge from the water bath of paint booth and for recycling cleaned water to paint booth after sludge separation. Floated sludge is introduced from the water surface in the bath by using floating skimmer, and is conveyed by pump to the centrifugal separator where sludge and cleaned water are separated. From the operation results of the present sludge treatment systems applied in actual paint booths, paint sludge can be separated automatically and effectively from water bath with its water content of $60-70\%$, and sludge-free clean water is returned to paint booth.

  • PDF

Estimation on the Design Capacities of Residuals Treatment Facilities by the Quantity of Dewatered Sludge Generated from Water Treatment Plants (정수장에서 발생된 탈수슬러지의 량에 의한 배출수처리시설용량에 대한 평가)

  • Moon, Yong-Taik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.715-723
    • /
    • 2004
  • The quantity of residuals generated from water treatment plants depends upon the raw water quality, dosage of chemicals used, performance of the treatment process, method of sludge removal, efficiency of sedimentation, and backwashing frequency. Sludge production by the physical separation of SS occurs under quiescent conditions in the primary clarifier, where suspended solids are allowed to settle and to consolidate on the clarifier bottom. Raw primary sludge results when the settled solids are hydraulically removed from the tank. The relative solid and liquid fractions of a slurry are most commonly described by the solids concentration, expressed as mg/L or percent solids. The purpose of the present investigation is to estimate a suitability on the design capacities of residuals treatment facilities by the quantity of dewatered sludge generated from water treatment plants.

Adsorption Characteristics of Heavy Metals for Waste Sludge and Oyster Shell (폐슬러지와 폐굴껍질의 중금속 흡착특성)

  • Jeon, Dae-Young;Lee, Kyung-Sim;Shin, Hyun-Moo;Oh, Kwang-Joong
    • Journal of Environmental Science International
    • /
    • v.15 no.11
    • /
    • pp.1053-1059
    • /
    • 2006
  • This study was performed to investigate the possible uses of waste sludge for the removal of heavy metal ions. The adsorption experiments were conducted with wastes such as sewage treatment sludge, water treatment sludge and oyster shell to evaluate their sorption characteristics. Heavy metals selected were cadmium, copper and lead. in the sorption experiments on the sewage treatment sludge, water treatment sludge, oyster shell and soil, sorption occurred in the beginning and it reached equilibrium after 40 minutes on the oyster shell and 4 hour on the sewage treatment sludge and water treatment sludge. Results of Freundlich isotherms indicated that sewage treatment sludge could be properly used as an adsorbent for heavy metals and sorption strength of heavy metals was in the order of Pb > Cu > Cd. In the influence of pH on the adsorbents, sorption rate was more than 80% in pH 4 and most of heavy metals were adsorbed in pH 9. Adsorption rate of Cd decreased with decreasing pH and then adsorption rate of Cu was lower in soil.

Simulations of a System Dynamics Model for Operations and Maintenance of Activated-Sludge Wastewater Treatment Plants (활성슬러지 하수처리시설 운영 및 유지관리를 위한 시스템다이내믹스 모델의 모의에 관한 연구)

  • Park, Suwan;Kim, Bong Jae;Jun, Hwan Don;Kim, In Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.905-912
    • /
    • 2006
  • In this paper, simulation methods of the system dynamics model developed by Das et al. (1997) for activated-sludge wastewater treatment plants are illustrated in an attempt to determine the operating rules and the policies related to capacity expansion of an activated-sludge wastewater treatment plant. For existing conditions, the analyses were performed by varying activated-sludge return rate to observe changes in effluent water quality and treatment efficiency. The effluent water quality is also analyzed for various average daily inflow conditions and activated-sludge return rates. As a result, without expanding the aeration tank, maximum average daily inflow that can satisfy the effluent water quality standard of BOD $0.02kg/m^3$ was determined as $2,840m^3/hr$, subject to 100% of activated-sludge return rate while other factors remain constant. When the activated-sludge return rate is less than 100%, expansion of the aeration tank is necessary and minimum sizes of the aeration tank to satisfy the effluent water quality standard were determined for various activated-sludge return rates. In addition, the total operating and maintenance as well as unit treatment cost regression equations for activated-sludge wastewater treatment plants are suggested by using the cost data that are obtained from Water and Wastewater Division, Ministry of Environment. The regression analyses showed that the economies of scale phenomena exist in the operating and maintenance costs of activated-sludge wastewater treatment plants.

Analysis of the sludge thickening characteristics in the thickener using CFD Model (CFD를 이용한 농축조 슬러지의 유출흐름특성 해석)

  • Park, No-Suk;Moon, Yong-Taik;Kim, Byung-Goon;Kim, Hong-Suck
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.777-782
    • /
    • 2011
  • The residual treatment facilities in WTP(water treatment plant) play an important role in solid-liquid separation. At present, it is difficult to solve problems related with thickening and dewatering of WTP sludge, and discharging waste water to river. The quantity of residuals generated from water treatment plants depends upon the raw water quality, dosage of chemicals used, performance of the treatment process, method of sludge removal, efficiency of sedimentation, and backwashing frequency. Sludge production by the physical separation of SS(Suspended Solid) occurs under quiescent conditions in the primary clarifier, where SSs are allowed to settle and to consolidate on the clarifier bottom. Raw primary sludge results when the settled solids are hydraulically removed from the tank. In this study, Drawing characteristics of the sludge thickening in the thickener of Water Treatment Plants was simulated by Using CFD(Computational Fluid Dynamics.

Comparison of Adsorption Performance of Ammonia and Formaldehyde Gas Using Adsorbents Prepared from Water Treatment Sludge and Impregnated Activated Carbon (정수슬러지 유래 흡착제와 첨착활성탄의 암모니아 및 포름알데히드 기체 흡착 성능 비교)

  • Lee, Choul Ho;Park, Nayoung;Kim, Goun;Jeon, Jong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • In this study, a pellet-type adsorbent was prepared by using the water-treatment sludge as a raw material, and its physical and chemical properties were analyzed through $N_2$-adsorption, XRD, XRF, and $NH_3$-TPD measurements. Adsorption performance for gaseous ammonia and formaldehyde was compared between the pellet-type adsorbents prepared from water-treatment sludge and the impregnated activated carbon. Although the surface area and pore volume of the pellet-type adsorbent produced from water-treatment sludge were much smaller than those of the impregnated activated carbon, the pellet-type adsorbent produced from water-treatment sludge could adsorb ammonia gas even more than that of using the impregnated activated carbon. The pellet-type adsorbent prepared from water-treatment sludge showed a superior adsorption capacity for ammonia which can be explained by chemical adsorption ascribed to the higher amount of acid sites on the pellet-type adsorbent prepared from water-treatment sludge. In the case of formaldehyde adsorption, the impregnated activated carbon was far superior to the adsorbent made from the water-treatment sludge, which can be attributed to the increased surface area of the impregnated activated carbon.

Improvement of effluent water quality by sludge aeration at the conventional drinking water treatment plant (정수장 슬러지 폭기를 통한 방류수 수질 개선)

  • Choi, Ilgyung;Shin, Changsoo;Beak, Inho;Lim, Jaecheol;Jeong, Chanwoo;Lee, Sungjin;Park, Jungwook
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.2
    • /
    • pp.249-255
    • /
    • 2014
  • So many drinking water treatment plants are under various difficulties by new reinforced effluent standards. Since the target turbidity, much higher than annual average, for designing sludge thickener have to be set to confront high turbidity season, the sludge at thickener should be put up for a long time during usual days. So the soluble manganese and chloroform may be formed under the anaerobic environment in the sludge thickener when the sludge retention time is longer with low turbidity. This phenomenon results in difficulties to keep regulatory level of the discharged effluent. For an effort to overcome the problems, a sludge aeration was successfully implemented into the thickening process. As a result, the final effluent quality and sludge volume were much improved; 41 % of manganese, 62 % of chloroform and 35 % of sludge volume. Additionally, effluent quality was improved ; 61 % of Manganese on aeration with pH control and we could make sure of stability effluent quality despite a long sludge retention time. We recommended the standard of installation sludge aeration equipment to nationally supply water treatment plant under effluent water quality problem ; Manganese, Chloroform, etc.

Sewage sludge conditions for promoting solubilization in the ball mill treatment (볼-밀 가용화 효과의 향상을 위한 하수슬러지 조건에 대한 연구)

  • Lee, Myoung Joo;Kim, Tae Hyung;Nam, Yang Won;Hwang, Sun Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.5
    • /
    • pp.505-510
    • /
    • 2008
  • Excess sludge and raw sludge were treated by ball mill in order to promote solubilization, and it was known that the level of solubilization was higher in excess sludge rather than raw sludge. About solid concentration, with the increase of TS, the amounts of solubilization was increased. And excess sludge was solubilized more effectively with the increase of ball mill treatment time. Especially, in case of excess sludge, within 5 min of ball mill treatment, 6 times of solubilization was achieved compared with raw sludge. The effect of bead size was also tested and 1 mm bead was most desirable when applied to the TS 4% of excess sludge. Particle size decrease by the ball mill treatment was more effective in raw sludge, nevertheless the level of solubilization was always higher in excess sludge. This means that the results of particle analysis could not be understood as a indicator for sludge solubilization. Generally, excess sludge and raw sludge are mixed at the thicker in the STP, but considering a ball mill pretreatment as an alternative for sludge solubilization, it is desirable to treat not raw sludge but excess sludge alone in the aspect of solubilization yield and economical process.