• 제목/요약/키워드: water transfer

검색결과 2,590건 처리시간 0.025초

충돌수분류의 천이 및 막비등열전달에 관한 연구 (An Experimental Study on Transition and Film Boiling Heat Transfer of Impinging Water Jet)

  • 엄기찬;서정윤
    • 대한설비공학회지:설비저널
    • /
    • 제14권2호
    • /
    • pp.87-97
    • /
    • 1985
  • Experimental measurements of the heat flux to a upward impinging water jet on high heated test surface were obtained in the transition and film boiling regimes. Test variables were nozzle outlet velocity, subcooled water temperature and height of supplementary water. Boiling curve of this investigation is similar to a pool boiling curve, but it has one or two cap-shaped peaks in the transition regime. In the film boiling regime, the heat transfer rates are increased along with the increment of nozzle outlet velocity and subcooled temperature. There is optimum height of supplementary water for the augmentation of heat transfer Generalized correlations of boiling heat transfer are presented for maximum heat flux, minimum heat flux and $q_c$ at each supplementary height.

  • PDF

친수성 표면처리가 수평관 외벽의 증발열전달에 미치는 영향 (Effects of Hydrophilic Surface Treatment on Evaporation Heat Transfer at the Outside Wall of Horizontal Tubes)

  • 박노성;황규대;강병하;정진택
    • 설비공학논문집
    • /
    • 제12권5호
    • /
    • pp.525-532
    • /
    • 2000
  • Evaporation heat transfer characteristics have been investigated experimentally when distilled water is sprayed on the outside wall of horizontal tubes in a evaporator. This problem is of particular interest in the design of evaporator of an absorption system. Hydrophilic surface treatment was employed to increase the wettability on copper tubes. The results indicate that evaporation heat transfer with hydrophilic tubes is shown to be 25-44% higher than that with bare tubes at evaporation pressure of 31.8 Torr(evaporation temperature$ 30^{\circ}C). Evaporation heat transfer rates of hydrophilic treatment tubes are improved substantially, comparing with those of conventional copper tubes in the wide range of operating parameters, such as water inlet temperatures, water mass flow rates and evaporation pressures.

  • PDF

전이함수잡음모형에 의한 공주지점의 용존산소 예측 (Forecasting of Dissolved Oxygen at Kongju Station using a Transfer Function Noise Model)

  • 류병로;조정석;한양수
    • 한국환경과학회지
    • /
    • 제8권3호
    • /
    • pp.349-354
    • /
    • 1999
  • The transfer function was introduced to establish the prediction method for the DO concentration at the intaking point of Kongju Water Works System. In the mose cases we analyze a single time series without explicitly using information contained in the related time series. In many forecasting situations, other events will systematically influence the series to be forecasted(the dependent variables), and therefore, there is need to go beyond a univariate forecasting model. Thus, we must bulid a forecasting model that incorporates more than one time series and introduces explicitly the dynamic characteristics of the system. Such a model is called a multiple time series model or transfer function model. The purpose of this study is to develop the stochastic stream water quality model for the intaking station of Kongju city waterworks in Keum river system. The performance of the multiplicative ARIMA model and the transfer function noise model were examined through comparisons between the historical and generated monthly dissolved oxygen series. The result reveal that the transfer function noise model lead to the improved accuracy.

  • PDF

Laminar Forced Convective Heat Transfer to Near-Critical Water in a Tube

  • Lee, Sang-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1756-1766
    • /
    • 2003
  • Numerical modeling is carried out to investigate forced convective heat transfer to near-critical water in developing laminar flow through a circular tube. Due to large variations of thermo-physical properties such as density, specific heat, viscosity, and thermal conductivity near thermodynamic critical point, heat transfer characteristics show quite different behavior compared with pure forced convection. With flow acceleration along the tube unusual behavior of heat transfer coefficient and friction factor occurs when the fluid enthalpy passes through pseudocritical point of pressure in the tube. There is also a transition behavior from liquid-like phase to gas-like phase in the developing region. Numerical results with constant heat flux boundary conditions are obtained for reduced pressures from 1.09 to 1.99. Graphical results for velocity, temperature, and heat transfer coefficient with Stanton number are presented and analyzed.

평판관-루버핀 열교환기의 공기측 열전달 및 압력강하 특성에 관한 실험적 연구 (An Experimental Study on Heat Transfer and Pressure Drop of Air Side in a Plate-Louvered Fin Heat Exchanger)

  • 강병하;김석현;장혁재;박병규
    • 설비공학논문집
    • /
    • 제14권6호
    • /
    • pp.485-492
    • /
    • 2002
  • Heat transfer and pressure drop on the air side of a plate-louvered fin heat exchanger with new shape of louver fin have been investigated experimentally. Water is employed inside the flat tube to transfer heat with air for convenience. This problem is of particular interest in the design of a plate-louvered heat exchanger. The effect of air flow rate, water flow rate and water temperature on pressure drop as well as heat transfer in air side are studied in detail. The present results showed a good agreement qualitatively with the previous results in general. Based on the experimental data, f-factor and j -factor correlations of the present louvered-fin are suggested. It is also found that heat transfer could be enhanced with new shape of louver fin, compared with the conventional louvered-fin, while the f-factor remains unchanged.

암모니아-물 흡수식 시스템에서 단열정류기의 물질 전달 (Mass transfer in adiabatic rectifier of ammonia-water absorption system)

  • 김병주
    • 설비공학논문집
    • /
    • 제11권3호
    • /
    • pp.414-421
    • /
    • 1999
  • Falling film rectification involves simultaneous heat and mass transfer between vapor and liquid interface. In the present work, the adiabatic rectification process of ammonia-water vapor on the vertical plate was investigated. The continuity, momentum, energy and diffusion equations for the solution film and vapor mixture were formulated in integral forms and solved numerically. The model could predict the film thickness, the pressure gradient, and the mass transfer rate. The effects of Reynolds number and ammonia concentration of solution and vapor mixture, rectifier length, and the enhancement of mass transfer in each phases were investigated. The stripping of water in vapor mixture occurred new the entrance of ammonia solution, which imposed the proper size of an adiabatic rectifier. Rectifier efficiency increased as film Reynolds number increased and as vapor mixture Reynolds number decreased. The improvement of rectifier efficiency was significant with the enhancement of mass transfer in falling film.

  • PDF

Mass Transfer in an Adiabatic Rectifier of Ammonia-Water Absorption System

  • Kim, Byong-Joo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제8권2호
    • /
    • pp.69-79
    • /
    • 2000
  • Falling film rectification involves simultaneous heat and mass transfer between vapor and solution film. In the present work, the adiabatic rectification process of ammonia-water vapor by the falling solution film on the vertical plate was investigated. The continuity momentum, energy and diffusion equations for the solution film and the vapor mixture were formulated in integral forms and solved numerically, The model could predict the film thickness, the pressure gradient, and the mass transfer rate. The effects of Reynolds number and ammonia concentration of solution and vapor mixture, rectifier length, and the enhancement of mass transfer coefficient in each phases were investigated. The stripping of water in vapor mixture occurred near the entrance of ammonia solution, which imposed the proper size of an adiabatic rectifier. Rectifier efficiency increased as film Reynolds number increased and as vapor mixture Reynolds number decreased. The improvement of rectifier efficiency was significant with the enhancement of mass transfer coefficient in falling film.

  • PDF

고분자 전해질 연료전지의 전류밀도와 국소 함수량 관찰 (Observation of local water content and current density in the PEMFC system)

  • 고동수;문철언;최경민;김덕줄;정지환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.69-72
    • /
    • 2008
  • The local water contents and water transfer characteristics in the PEMFC system were investigated by numerical simulations and experiments. The performance of a lab-scale PEMFC is measured for fully humidified gases conditions and non-humidified ones. In order to observe the local water contents and water transfer characteristics inside PEMFC, the numerical simulation using CFD module on STAR-CD(es-pemfc) were conducted. The results show that the water content was increased as increasing current density, whereas it was decreased in high current density region. Then there was close correlation between high water content and internal temperature inside of MEA, and high current density was observed when internal temperature was dramatically increased.

  • PDF

FAPO 제올라이트 흡착제 코팅을 통한 핀-관 열교환기 운전조건별 열전달 성능특성 (Heat Transfer Characteristics of Fin-Tube Heat Exchanger Coated with FAPO Zeolite Adsorbent at Different Operating Conditions)

  • 정철기;김용찬;배경진;차동안;권오경
    • 동력기계공학회지
    • /
    • 제21권3호
    • /
    • pp.93-101
    • /
    • 2017
  • In conventional adsorption chamber, adsorbent is embedded in between heat exchanger fins by wire mesh. This method impedes heat and mass transfer efficiency. So in this study, to improve the heat transfer performance of heat exchanger, a fin-tube exchanger was coated with FAPO (Ferroaluminophosphate) zeolite adsorbent. The fin-tube heat exchanger has a fin pitch of 1.8 mm with a variation of adsorbent coating thickness of about 0.1 mm, 0.15 mm and 0.2 mm. By varying cooling water temperature and chilled water temperature respecively, heat transfer rate and overall heat transfer coefficient were investigated. As a result, the heat transfer rate and overall heat transfer coefficient increase with decreasing cooling water temperature and increasing chilled water temperature. Under the basic conditions, the heat transfer rate of heat exchanger with 0.2 mm coating thickness is 11% and 43% higher than that of 0.1 mm and 0.15 mm, respectively. The overall heat transfer coefficient is $189.1W/m^2{\cdot}^{\circ}C$, it is two times lager than that of 0.1 mm.

수직관내(垂直管內)를 흘러내리는 액막식(液膜式) 흡수기(吸收器)의 흡수(吸收) 및 열전달특성(熱傳達特性)(제(第)2보(報) 열전달특성(熱傳達特性)) (Characteristics of Absorption and Heat Transfer for Film Falling along a Vertical Inner Tube (2nd. Report, Characteristics of Heat Transfer))

  • 엄기찬;이동호;최국광;카시와기 타카오;서정윤
    • 설비공학논문집
    • /
    • 제5권4호
    • /
    • pp.257-264
    • /
    • 1993
  • This is the second report of a three part study on the absorption and heat transfer characteristics of absorber, the correlation of refrigerating capacity and heating capacity. The 2nd report deals with the heat transfer characteristics of a vertical falling film type absorber of inner copper tube. The solute is LiBr-Water solution(60wt%) and the solvent is water vapor. The film Reynoles numbers are varied in the range of 35~130. The states of LiBr solution at the top of absorber are supercooled liquid and superheated liquid. The results are summarized as follows ; Heat transfer results reveal that for the absorption of falling film, the state of LiBr solution appears to be influential in determining the heat transfer. Thus, for the state of supercooled liquid, heat transfer coefficient decreases with increasing the film Reynolds number, but in the condition of superheated liquid, it increases conversely. The mass transfer coefficients that were presented in the 1st.report and heat transfer coefficients of this paper are presented as the dimensionless correlation. The optimum water flowrate which brings about maximum value of heat flux in the film exists, and that increases with increasing the cooling water temperature.

  • PDF