• Title/Summary/Keyword: water temperature increase

Search Result 2,317, Processing Time 0.038 seconds

Kinetics of Water Vapor Absorption by Sodium Alginate-based Films

  • Seog, Eun-Ju;Zuo, Li;Lee, Jun-Ho;Rhim, Jong-Whan
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.1
    • /
    • pp.28-32
    • /
    • 2008
  • Water vapor sorption by sodium alginate-based films may result in swelling and conformational changes in the molecular structure and affecting the water vapor barrier properties. Sodium alginate film specimens were dried in a vacuum freeze dryer and their moisture content was determined by an air-oven method. The water vapor absorption was determined at two different levels of water activities (0.727 and 0.995) and at three temperatures (10, 20, and $30^{\circ}C$), and kinetics were analyzed using a simple empirical model. Reasonably good straight lines were obtained with plotting of 1/($m-m_0$) vs 1/t. It was found that water vapor absorption kinetics of sodium alginate films were accurately described by a simple empirical model. The rate of water vapor sorption increased with increase in temperature and it showed temperature dependency following the Arrhenius equation. The activation energies varied from 49.18$\sim$149.55 kJ/mol depending on the relative humidity.

Water quality big data analysis of the river basin with artificial intelligence ADV monitoring

  • Chen, ZY;Meng, Yahui;Wang, Ruei-yuan;Chen, Timothy
    • Membrane and Water Treatment
    • /
    • v.13 no.5
    • /
    • pp.219-225
    • /
    • 2022
  • 5th Assessment Report of the Intergovernmental Panel on Climate Change Weather (AR5) predicts that recent severe hydrological events will affect the quality of water and increase water pollution. To analyze changes in water quality due to future climate change, input data (precipitation, average temperature, relative humidity, average wind speed, and solar radiation) were compiled into a representative concentration curve (RC), defined using 8.5. AR5 and future use are calculated based on land use. Semi-distributed emission model Calculate emissions for each target period. Meteorological factors affecting water quality (precipitation, temperature, and flow) were input into a multiple linear regression (MLR) model and an artificial neural network (ANN) to analyze the data. Extensive experimental studies of flow properties have been carried out. In addition, an Acoustic Doppler Velocity (ADV) device was used to monitor the flow of a large open channel connection in a wastewater treatment plant in Ho Chi Minh City. Observations were made along different streams at different locations and at different depths. Analysis of measurement data shows average speed profile, aspect ratio, vertical position Measure, and ratio the vertical to bottom distance for maximum speed and water depth. This result indicates that the transport effect of the compound was considered when preparing the hazard analysis.

A Thermodynamic Study on Freezing Characteristics of Weathered Tuff Soil- Freezing Point Depression with the Variation of Overburden Pressure - (응회암 풍화토의 동결특성에 관한 열역학적 연구-상재하중과 동결점 저하를 중심으로-)

  • 서상열
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.297-306
    • /
    • 1999
  • In this research, the frost heave mechanism of the weathered tuff soil sampled from the area tying between Ulanbator and Beijing was studied. The frost heave tests were carried maintaining the constant temperature at both upper$(+5^{\circ}C)\; and\; lower(-5^{\circ}C)$ ends of the sample. Here, main emphasis is given on variation of the freezing point depression with the variation of applied overburden pressure. The expansion of ice lens and migration of the pore water towards freezing front were observed in the test. It was found that with the increase in overburden pressure there is decrease in heave rate and increase in the absolute value of a segregation-freezing temperature. Hence the equation between segregation-freezing temperature and overburden pressure could be suggested. Also the water content of the samples at the frozen side was shown to be higher than those at the unfrozen side. Similarly, the water at warmer part of the frozen tuff was found much higher than that of the cooler part.

  • PDF

Climate Elasticity of Korean Streamflows (기후변동에 대한 한국 하천유량의 탄력성)

  • Jung, Il-Won;Chang, Hee-Jun;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.10
    • /
    • pp.851-864
    • /
    • 2010
  • We investigated the sensitivity of Korean streamflows to climate variation. Historical dam inflows and climate data for eight multi-purpose dam sites were collected and examined to determine key factors affecting streamflow change. The results show that annual streamflow primarily responds to change in precipitation rather than temperature. However, the combination of less precipitation and high temperature induces a more serious decrease in streamflow than does similar precipitation and with low temperature. This result indicates that Korean water resources could be more vulnerable to drought due to increasing temperature caused by global warming. To estimate spatial differences in climate sensitivity, we also calculated climate elasticity for 109 mid-size watersheds using streamflow simulated by the Precipitation Runoff Modeling System (PRMS). Climate elasticity ranges over 1.5~1.9, indicating that a +20% increase in annual precipitation leads to a +30~+38% increase in annual streamflow.

The Effects of CO2 Injection and Barrel Temperatures on the Physiochemical and Antioxidant Properties of Extruded Cereals

  • Thin, Thazin;Myat, Lin;Ryu, Gi-Hyung
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.3
    • /
    • pp.271-280
    • /
    • 2016
  • The effects of $CO_2$ injection and barrel temperatures on the physiochemical and antioxidant properties of extruded cereals (sorghum, barley, oats, and millet) were studied. Extrusion was carried out using a twin-screw extruder at different barrel temperatures (80, 110, and $140^{\circ}C$), $CO_2$ injection (0 and 500 mL/min), screw speed of 200 rpm, and moisture content of 25%. Extrusion significantly increased the total flavonoid content (TFC) of extruded oats, and ${\beta}$-glucan and protein digestibility (PD) of extruded barley and oats. In contrast, there were significant reductions in 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, PD of extruded sorghum and millet, as well as resistant starch (RS) of extruded sorghum and barley, and total phenolic content (TPC) of all extrudates, except extruded millet. At a barrel temperature of $140^{\circ}C$, TPC in extruded barley was significantly increased, and there was also an increase in DPPH and PD in extruded millet with or without $CO_2$ injection. In contrast, at a barrel temperature of $140^{\circ}C$, the TPC of extruded sorghum decreased, TFC of extruded oats decreased, and at a barrel temperature of $110^{\circ}C$, PD of extruded sorghum without $CO_2$ decreased. Some physical properties [expansion ratio (ER), specific length, piece density, color, and water absorption index] of the extrudates were significantly affected by the increase in barrel temperature. The $CO_2$ injection significantly affected some physical properties (ER, specific length, piece density, water solubility index, and water absorption index), TPC, DPPH, ${\beta}$-glucan, and PD. In conclusion, extruded barley and millet had higher potential for making value added cereal-based foods than the other cereals.

Ion Flux Assisted PECVD of SiON Films Using Plasma Parameters and Their Characterization of High Rate Deposition and Barrier Properties

  • Lee, Joon-S.;Jin, Su-B.;Choi, Yoon-S.;Choi, In-S.;Han, Jeon-G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.236-236
    • /
    • 2011
  • Silicon oxynitride (SiON) was deposited for gas barrier film on polyethylene terephthalate (PET) using octamethylycyclodisiloxane (Si4O4C8H24, OMCTS) precursor by plasma enhanced chemical vapor deposition (PECVD) at low temperature. The ion flux and substrate temperature were measured by oscilloscope and thermometer. The chemical bonding structure and barrier property of films were characterized by Fourier transform infrared (FT-IR) spectroscopy and the water vapor transmission rate (WVTR), respectively. The deposition rate of films increases with RF bias and nitrogen dilution due to increase of dissociated precursor and nitrogen ion incident to the substrate. In addition, we confirmed that the increase of nitrogen dilution and RF bias reduced WVTR of films. Because, on the basis of FT-IR analysis, the increase of the nitrogen gas flow rate and RF bias caused the increase of the C=N stretching vibration resulting in the decrease of macro and nano defects.

  • PDF

Corrosivity Characteristics of Raw Water in Korea (국내 상수원수의 부식성 특성)

  • Kim, Jin-Keun;Kim, Jae-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.839-846
    • /
    • 2011
  • To investigate corrosivity characteristics of raw water in Korea, Langelier index (LI) of 30 multi-regional water treatment plants (WTPs) were evaluated. Annual average values of LI at 30 WTPs were all negative, which means raw water in Korea is very corrosive. LI results for 4 major rivers showed that raw water from Han and Nakdong had relatively high values compared to those of Sumjin and Keum. On the other hand, LI values of raw water from the tributaries of four major rivers were relatively low presumably due to geological characteristics, and in some cases the values were less than -4.0 which means increase of LI is urgently needed to minimize red water problem. Based on the correlation results among LI and water quality parameters, pH, water temperature, calcium concentration were confirmed as major components for LI. Therefore, pH and calcium concentration control is an effective method for the improvement of LI in water treatment processes.

INTRAPULPAL TEMPERATURE CHANGE OF GLASS IONOMER ACCORDING TO LIGHT CURING INTENSITY AND CURING TIME (광중합기의 광도와 시간에 따른 글래스 아이오노머의 치수내 온도변화)

  • 김희량;이형일;이광원;이세준
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.5
    • /
    • pp.387-392
    • /
    • 2001
  • When cavity floor is near the pulp, polymerization of light-activated restorations results in temperature increase. This temperature increase cause by both the exothermic reaction process and the energy absorbed during irradiation. Therefore instating base is required. Most frequently used insulating base is glass ionmer. The purpose of this study was to evaluate intrapulpal temperature changes of glass ionomer according to various curing intensity and curing time. Caries and restoration-free mandibular molars extracted within three months were prepared Class I cavity of 3$\times$6mm with high speed handpiece. 1mm depth of dentin was evaluated with micrometer in mesial and distal pulp horns. Pulp chambers were filled with 37.0$\pm$0.1$^{\circ}C$ water to CEJ. Chromium-alumina thermocouple was placed in pulp horn for evaluating of temperature changes. glass ionomer material was placed in 2mm. total curing time was 40s: continuous 40s, intermittent 20s, intermittent 10s. Glass ionomer material was cured with 300mW/$\textrm{cm}^2$, 550mW/$\textrm{cm}^2$ light curing unit. The results were as follows : 1. Temperature in pulp increased as curing unit power is increased. 2. Temperature in pulp more increased continuous emission than intermittent emission.

  • PDF

A Review on Spalling Phenomenon of High Strength Concrete during a Fire Accident (화재시 고강도 콘크리트의 폭열현상에 관한 고찰)

  • Kim, Hyung-Doo
    • Fire Science and Engineering
    • /
    • v.20 no.2 s.62
    • /
    • pp.80-86
    • /
    • 2006
  • This study focuses on spalling phenomenon which is the one of the main issues of high strength concrete. The definition, classification and characterization, causes and the reaction mechanism of the spalling were investigated on the basis of previous literatures. The spalling phenomenon occurs when several factors such as sharp temperature increase, high water content, low water/cement ratio and local stress concentration in material combine in the concrete material. On the basis o f the factors, the preventing methods from the spalling are known as decrease of temperature increase, preventing of concrete fragmentation and fast drying of internal moisture. In this study, the controlling method of water content below some critical value was proposed as the most effective spalling-preventing method among the spalling-preventing methods. The spalling phenomenon can be prevented by adjusting the water content in the high strength concrete. Therefore, an enforced drying method is needed to decrease the water content below a critical value. Additional experimental data should be generated to determine the critical value of water content for preventing the spalling.

Preparation and Characterization of Solid Dispersions of Itraconazole by using Aerosol Solvent Extraction System for Improvement in Drug Solubility and Bioavailability

  • Lee, Si-Beum;Nam, Kyung-Wan;Kim, Min-Soo;Jun, Seoung-Wook;Park, Jeong-Sook;Woo, Jong-Soo;Hwang, Sung-Joo
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.866-874
    • /
    • 2005
  • The objective of this study was to elucidate the feasibility to improve the solubility and bioavailability of poorly water-soluble itraconazole via solid dispersions by using supercritical fluid (SCF). Solid dispersions of itraconazole with hydrophilic polymer, HPMC 2910, were prepared by the aerosol solvent extraction system (ASES) under different process conditions of temperature/pressure. The particle size of solid dispersions ranged from 100 to 500 nm. The equilibrium solubility increased with decrease (15 to 10 MPa) in pressure and increase (40 to $60^{\circ}C$) in temperature. The solid dispersions prepared at $60^{\circ}C$/15 MPa showed a slight increase in equilibrium solubility (approximately 27-fold increase) when compared to pure itraconazole, while those prepared at $60^{\circ}C$/10MPa showed approximately 610-fold increase and no endothermic peaks corresponding to pure itraconazole were observed, indicating that itraconazole might be molecularly dispersed in HPMC 2910 in the amorphous form. The amorphous state of itraconazole was confirmed by DSC/XRD data. The pharmacokinetic parameters of the ASES-processed solid dispersions, such as $T_{max},\;C_{max},\;and\;AUC_{0-24h}$ were almost similar to $Sporanox_{\circledR}$ capsule which shows high bioavailability. Hence, it was concluded that the ASES process could be a promising technique to reduce particle size and/or prepare amorphous solid dispersion of drugs in order to improve the solubility and bioavailability of poorly water-soluble drugs.