• Title/Summary/Keyword: water temperature increase

Search Result 2,313, Processing Time 0.034 seconds

Preparation of Monodisperse Poly(Acrylic acid) with a Water-Soluble Initiator by Solution Polymerization in Aqueous Phase (수용액 내에서 수용성개시제를 이용한 단분산성 폴리아크릴산의 용액중합)

  • Park, Moonsoo;Kim, Yeji
    • Elastomers and Composites
    • /
    • v.49 no.3
    • /
    • pp.232-238
    • /
    • 2014
  • Solution polymerization was conducted with water-soluble acrylic acid (AA) as a monomer and potassium persulfate (KPS) as an initiator at a selected temperature between $60^{\circ}C$ and $90^{\circ}C$ with water as a reaction medium. When the ratio between AA and water was reduced or initiator concentration increased, molecular weights decreased. An increase in the reaction temperature produced lower molecular weights. The polydispersity index was close to 1.5 in most of the reactions. An increase in the stirring speed up to 400 rpm led to a progressive increase in molecular weights. When the stirring speed reached 800 rpm, however, we found that both the number and weight average molecular weights decreased. The glass transition temperature was nearly independent of moelcular weights and determined to be between $113^{\circ}C$ and $116^{\circ}C$.

Comparison of Salinity and Composting Efficiency by Washing before and after Aerobic Composting of Food Wastes (음식물쓰레기의 호기성 퇴비화 전과 후의 세척에 따른 염분도와 퇴비화효율 비교)

  • Park Seok Hwan
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.2 s.83
    • /
    • pp.160-164
    • /
    • 2005
  • This study was performed to evaluate the effects of washing food wastes before aerobic composting on temperature, pH and salinity, and the effects of washing after composting on salinity of sample mixtures. Weight ratios of food wastes to water in washing were 1:0(Control), 1:1(W-1), 1:2(W-2), 1:3(W-3) and 1:0(N-4), respectively. Ratios of food wastes to wood chips in reactor of Control, W-1, W-2, W-3 and N-1 were $5\;kg:0\iota,\;5\;kg:5\iota,\;5\;kg:5\iota,\;5\;kg:5\iota\;and\;5\;kg:5\iota$, respectively. Reactors were operated for 24 days with 1 hour stirring by 1 rpm and 2 hours of forced aeration per day. The increase in the ratio of water to food wastes resulted in the increase of the maximum reaction temperature and the shortening of the high temperature reaction period. The increase in the ratio of water to food wastes also resulted in faster reaching to the lowest pH and then to the steady state of pH 9.0. The final salinities of Control, N-1, W-1, W-2 and W-3 were $1.04\%,\;0.92\%,\;0.78\%,\;0.64\%\;and\;0.53\%$, respectively. The salinities of the N-l samples which were washed by the weight ratios (water:N-l) of 1:1, 2:1 and 3:1 after composting were $0.72\%,\;0.61\%\;and\;0.51\%$, respectively. Therefore, washing food wastes before aerobic composting is more efficient method than that after aerobic composting.

Dependence of Crosslinking Temperature on Swelling Behavior of Hyaluronic Acid Porous Microbeads Synthesized by a Modified Spray Method (노즐 낙하법으로 제조한 히알루론산 다공성 마이크로비드의 가교온도에 따른 팽윤특성)

  • Kim, Young-Hun;Lee, In-Kyu;Kim, Jin-Tae;Park, Ju-Hyun;Lee, Deuk Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.518-522
    • /
    • 2012
  • Hyaluronic acid (HA) microbeads were synthesized by dropping 0.5 wt% of sodium hyaluronate dissolved in NaOH into 0.2 vol% of divinyl sulfone dissolved in 2-methyl-1propanol at a speed of 0.005 ml/min. HA microbeads were collected from a divinyl sulfone crosslinker solution stirred at 200 to 400 rpm for 5 h at temperatures from room temperature to $60^{\circ}C$ at intervals of $10^{\circ}C$. The crosslinked microbeads were then cleaned thoroughly using distilled water and ethanol. SEM results revealed that the microbeads were white-colored spheres. The 3-D porous network structure of the microbeads became dense with an increase in the crosslinking temperature; however, no dependence of the crosslinking temperature on the microbead size was detected. The extent of swelling decreased from 970% to 670% with an increase in the crosslinking temperature from room temperature to $60^{\circ}C$, most likely due to the increase in the degree of crosslinking.

Effect of Elevated CO2 and Temperature on Growth, Yield and Physiological Responses of Major Rice Cultivars by Region in South Korea

  • Hae-Ran Kim;Young-Han You;Heon-Mo Jeong
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.4
    • /
    • pp.341-351
    • /
    • 2022
  • The physiological characteristics, growth, and yield of each regional rice variety ('Odaebyeo', 'Saechucheong', 'Ilmibyeo') were investigated depending on the impact of changes in temperature and CO2 concentration. Experiments were conducted with a control group, which reflected atmospheric CO2 concentration and temperature, and treatment groups, in which the CO2 concentration and temperature were increased by 250 ppm and 2.0℃ from those in the control group. The results showed that the increase in CO2 concentration and temperature reduced the growth and yield of the rice 'Odaebyeo', but did not substantially change the productivity of the 'Saechucheong' and 'Ilmibyeo'. The increase in CO2 concentration and temperature increased stomatal conductance and rate of transpiration of the 'Odaebyeo' variety, thereby decreasing its water use efficiency (WUE). In contrast, the increase in CO2 concentration and temperature increased the photosynthetic rate and WUE of the 'Saechucheong' and 'Ilmibyeo' varieties. The gradual change in climate is considered to directly affect growth and development of rice and diversely affect the productivity of each variety. Therefore, it is necessary to implement technological development, select regionally optimal rice varieties, develop new rice varieties, as well as conduct long-term monitoring of each rice variety for climate adaptation to counter global warming.

The effect of intermittent feeding and cold water on performance and carcass traits of broilers reared under daily heat stress

  • Erensoy, Kadir;Noubandiguim, Moise;Sarica, Musa;Aslan, Resul
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.2031-2038
    • /
    • 2020
  • Objective: This study aimed to determine the effect of intermittent feeding and cold water on performance and carcass traits in broiler chickens between 4 to 6 wk of age exposed to daily high temperature. Methods: Broilers were assigned to four treatment groups according to a 2×2 factorial design between 22 to 42 d of age (80 broilers per treatment, 4 replications). Broilers were divided into two main groups as feeding type (ad-libitum [AL] and intermittent [IF] for 6 h daily) and sub-groups as water temperature (normal [NW], 24.9℃ and cold [CW], 16.4℃). Heat treatment was applied between 11.00 to 17.00 h daily between 22 to 42 d of age. Results: Live weight at 6th wk was not affected by feeding type and water temperature, but the live weight was significantly higher in IF chickens at the 5th wk (p<0.05). Average weekly gain of IF broiler chickens were higher compared to AL group at 4, 5, and 6 wk of age (p< 0.05). Although feeding type did not affect feed intake in 4 and 5th wk, feed intake was higher in IF chickens at 6th wk (p<0.01). In addition, feeding type and water temperature did not affect feed conversion ratio and interactions were not significant (p>0.05). Water temperature had no significant effect on heart, liver, gizzard, and abdominal fat percentages (p>0.05). Conclusion: It is concluded that IF increased the average weekly gain in chickens reared under daily heat stress for 6 h between 22 to 42 d of age. IF in hot environmental conditions slightly increased performance without adversely affecting health, welfare, and physiological traits, whereas CW implementation had no significant effect on performance. It can also be said that IF suppresses a sudden increase in body temperature depending on age and live weight.

Projecting the climatic influences on the water requirements of wheat-rice cropping system in Pakistan (파키스탄 밀-옥수수 재배시스템의 기후변화를 반영한 필요수량 산정)

  • Ahmad, Mirza Junaid;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.486-486
    • /
    • 2018
  • During the post green revolution era, wheat and rice were the main crops of concern to cater the food security issues of Pakistan. The use of semi dwarf high yielding varieties along with extensive use of fertilizers and surface and ground water lead to substantial increase in crop production. However, the higher crop productivity came at the cost of over exploitation of the precious land and water resources, which ultimately has resulted in the dwindling production rates, loss of soil fertility, and qualitative and quantitative deterioration of both surface and ground water bodies. Recently, during the past two decades, severe climate changes are further pushing the Pakistan's wheat-rice system towards its limits. This necessitates a careful analysis of the current crop water requirements and water footprints (both green and blue) to project the future trends under the most likely climate change phenomenon. This was done by using the FAO developed CROPWAT model v 8.0, coupled with the statistically-downscaled climate projections from the 8 Global Circulation Models (GCMs), for the two future time slices, 2030s (2021-2050) and 2060s (2051-2080), under the two Representative Concentration Pathways (RCPs): 4.5 and 8.5. The wheat-rice production system of Punjab, Pakistan was considered as a case study in exploration of how the changing climate might influence the crop water requirements and water footprints of the two major crops. Under the worst, most likely future scenario of temperature rise and rainfall reduction, the crop water requirements and water footprints, especially blue, increased, owing to the elevated irrigation demands originating from the accelerated evapotranspiration rates. A probable increase in rainfall as envisaged by some GCMs may partly alleviate the adverse impacts of the temperature rise but the higher uncertainties associated with the predicated rainfall patterns is worth considering before reaching a final conclusion. The total water footprints were continuously increasing implying that future climate would profoundly influence the crop evapotranspiration demands. The results highlighted the significance of the irrigation water availability in order to sustain and improve the wheat-rice production system of Punjab, Pakistan.

  • PDF

Effect of Temperature on the Surface Tensions in the Detergency System(I) -Change of Surface Tension Components of Washing Liquids- (온도가 세척계의 표면장력에 미치는 영향(제1보) -세액의 표면장력 성분변화를 중심으로-)

  • Chae, Chung-Hee;Kim, Sung-Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.4
    • /
    • pp.511-517
    • /
    • 1993
  • Changes of the surface and interface tension with temperature for washing liquids and alkanes were measured by FACE surface tensiometer. Using the extended Fowkes' equation, the dispersion and polar force components of the surface tension were estimated. The results were as follows : 1. The surface tensions of washing liquids and alkanes decreased almost linearly with the increase of temperature. 2. The interface tensions of 0.25% DBS/alkane increased slowly with the increase of temperature. In the case of nonionic surfactant solutions, however, the interface tensions with alkanes varied with the number of hydrophilic ethylene oxide(EO) groups. 3. Of the surface tension of water at $20^{\circ}C$, the dispersion force component was 25.3 dyn/cm and the polar force component was 47.8 dyn/cm. As the temperature increased, both the polar and dispersion force components decreased in a similar fashion. 4. The dispersion force component of surface tension of 0.25% DBS solution was 30.0 dyn/cm, and the polar force component was 2.2 dyn/cm at $20^{\circ}C$. The two components decreased with the increase of temperature. 5. As the temperature increased, the dispersion force component of surface tension decreased and the polar force component increased significantly for 0.25% NPPG-7.5EO solution. In the case of 025% NPPG-10EO, both the dispersion and polar force components decreased slowly, but the polar force component is expected to increase from $60^{\circ}C$. However, the polar force component of surface tension decreased with the increase of temperature for 025% NPPG-15EO solution, and at the temperature higher than $60^{\circ}C$ the surface tension is expected to be composed of only dispersion force component.

  • PDF

TEMPERATURE CHANGES IN THE PULP ACCORDING TO VARIOUS ESTHETIC RESTORATIVE MATERIALS AND BASES DURING CURING PROCEDURE (광중합 시 수종의 심미적 수복재와 이장재의 사용에 따른 치수내 온도변화)

  • 장혜란;이형일;이광원;이세준
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.5
    • /
    • pp.393-398
    • /
    • 2001
  • Polymerization of light-activated restorations results in temperature increase caused by both the exothermic reaction process and the energy absorbed during irradiation. Within composite resin, temperature increases up to 2$0^{\circ}C$ or more during polymerization. But, insulation of hard tissue of tooth lowers this temperature increase in pulp. However, many clinicians are concerned about intrapulpal temperature injury. The purpose of this study was to evaluate temperature changes in the pulp according to various restorative materials and bases during curing procedure. Caries and restoration-free mandibular molars extracted within three months were prepared Class I cavity of 3$\times$6mm with high speed handpiece fissure bur. 1mm depth of dentin was evaluated with micrometer in mesial and distal pulp horns. Pulp chambers were filled with 37.0$\pm$0.1$^{\circ}C$ water to CEJ. Chromium-alumina thermocouple was placed in pulp horn below restorative materials for evaluating of temperature changes. This thermocouple was connected to temperature-recording device(Multiplication analyzer MX, 6.000, JAPAN). Temperature changes was evaluated from initial 37.$0^{\circ}C$ after temperature changes to 37.$0^{\circ}C$. Tip of curing unit was placed in the center of prepared cavity separated 1mm from restorative materials. Curing time was 40s. The restorative materials were used with Z 100, Fuji II LC, Compoglass flow and bases were used with Vitrebond, Dycal. Resrorative materials were placed in 2mm. The depth of bases were formed in 1mm and in this upper portion, resin of 2mm depth was placed. This procedure was performed 10 times. The results were as follows. 1. All the groups showed that the temperature in pulp increased as curing time increased 2. The temperature increase of glass ionomer was significantly higher than that of Resin and Compomer during curing procedure (P<0.05). 3. The temperature increase in glass ionomer base was significantly higher than that of Calcium hydroxide base during Resin curing procedure (P<0.05).

  • PDF

Study on Spawning Induction and Larvae Breeding of the Hard Clam, Meretrix petechiails (Lamarck) (말백합, Meretrix petechiails (Lamarck) 의 산란유발 및 유생사육에 관한 연구)

  • Kim, Byeong-Hak;Moon, Tae-Seok;Park, Ki-Yeol;Jo, Pil-Gue;Kim, Min-Chul
    • The Korean Journal of Malacology
    • /
    • v.26 no.2
    • /
    • pp.151-156
    • /
    • 2010
  • For industrialization of the hard clams, Meretrix petechiails (Lamarck), spawning was induced per spawning induction technique in the artificial maturation group administered of parent maturation control and the natural maturation group of which parents were transported for artificial spawning per time period. Then, fertilization rates, hatching rates and D-shaped larva development rates were investigated. In addition, growth and survival rates of larvae were investigated per larva breeding technique. The results of spawning induction by exposure in the artificial maturation group indicated that response rates were relatively higher at 23% and 32% respectively at the 4th hour and the 8th hour of exposure. In terms of water temperature increase, responses began only when the temperature reached $28^{\circ}C$ or higher. In the experiment group administered with both exposure and water temperature increase techniques, response rate was found to be 45% or higher at the 4th hour of exposure and the temperature of $28^{\circ}C$. At the temperatures of 29, 30 and $31^{\circ}C$, significant differences were not observed. Therefore, it was indicated that the response rates of parent hard clams were higher toward water temperature increase than exposure time. As for spawning induction per time period of the transported parent group, response rate and D-shaped larva development rate were the highest at 67.6% and 96% respectively on August 6, 2009. In terms of water temperatures during larva breeding experiment, growth was faster as water temperature was higher. In addition, growth and survival rates were relatively higher at the salinity of 25. In terms of stocking density, growth and survival rates were relatively higher at 5 inds./mL.

An Experimental Study of the Effects of Water Vapor in Intake Air on Comvustion and knock Characteristics in a Spark Ignition Engine (흡기중 수증기 함량이 스파크 점화기관의 연소 및 노킹에 미치는 영향에 관한 실험적 연구)

  • 이택헌;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.205-212
    • /
    • 1998
  • In this study, the effects of water vapor in inlet air on combustion efficiency, general performance, knock characteristics and emission gas concentration were investig- ated through the experiments of combustion and vibration analyses, emission gas analysis by changing water vapor quantity in inlet air with temperature and humidity auto control unit. With partial vapor pressure increase, the brake torque at wide open throttle status decreased and the average ignition delay angle increased, IMEP (indicated mean effective pressured using the integral and 3rd derivatives of filtered cylinder pressure as knock intensity, which matched well with the method of frequency power spectrum of block vibration signal. Water vapor in intake air had influence on the spark knock sensitivity. With the increase of water vapor content in intake air NOx emission was decreased and HC emission was increased.

  • PDF