• Title/Summary/Keyword: water supply ratio

Search Result 332, Processing Time 0.026 seconds

Parallel reservoirs system operation using NYC-Space Allocation-Rule (NYC-Space Allocation Rule을 이용한 병렬저수지 연계운영)

  • Park Ki-Bum;Lee Soon-Tak
    • Journal of Environmental Science International
    • /
    • v.14 no.6
    • /
    • pp.533-542
    • /
    • 2005
  • In this study, an optimization technique was developed from the application of Allocation Rule. Average Allocation coefficients of the Andong and Imha dam compare constant water supply condition with vary water supply condition that are above the contribute ratio $67\%\~50\%$ the Andong dam in Rule(A)-Rule(C). In the Refill Season, Andong dam water supply contribution is higher than Imha dam at the Control point water supply. In the Allocation analysis results, Rule(A) is calculated storage ratio because Andong dam contribute to Control point larger than Imha dam which Andong dam storage is larger than Imha dam storage. Rule(B) calculated sum of the storage and inflow ratio for Andong dam and Imha dam, as Andong dam contribution is higher than Imha dam. Rule(C) calculated that sum of storage, inflow and water supply is divided average storage ratio, as the best results of the Allocation coefficients and water supply capacity. The results of storage analysis is larger vary water supply condition than constant water supply condition and the results of water supply analysis is larger vary water supply condition than constant water supply condition. Water supply deficit is decrease $30\%$ for vary water supply condition.

An Investigation of the Relationship between Revenue Water Ratio and the Operating and Maintenance Cost of Water Supply Network (상수관망 유수율과 유지관리 비용의 관계 분석)

  • Kim, Jaehee;Yoo, Kwangtae;Jun, Hwandon;Jang, Jaesun
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.202-212
    • /
    • 2012
  • Due to the deterioration of water supply network and the deficiency of raw water, the water utility of local governments have performed various projects to improve their revenue water ratio. However, it is very difficult to estimate the cost for maintaining the revenue water ratio at higher level after completing the project, because local governments have different conditions affecting the operating and maintenance cost of water supply network. The purpose of this study is to present a procedure to estimate the operating and maintenance cost required to maintain the target revenue water ratio of the water supply network. For this purpose, we estimated the cost used only for operation and maintenance of water supply network of 164 local governments with the aid of K-Mean Clustering Analysis and the data from 40 representative local governments. Then, the regression analysis was performed to find relationship between revenue water ratio and the operating and maintenance cost with two different data sets generated by two classification methods; the first method classifies the local governments by means of k-means clustering, and the other classifies the local governments according to the index standardized by the operating and maintenance cost per unit length of water mains per revenue water ratio. The results shows that the method based on the index standardized by the cost and revenue water ratio of each government produces more reliable results for finding regression equations between revenue water ratio and the operating and maintenance cost only for water supply network. The estimated regression equations for each group can be used to estimate the cost required to keep the target revenue water ratio of the local government.

The Analysis on the Correlationship for Rousing Demands and Water Supply Ratio (주택수요 예측을 위한 주택량과 상수도보급률의 상관성 분석)

  • Yang Seung-Won;Park Keun-Joon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.2 s.24
    • /
    • pp.61-68
    • /
    • 2005
  • The analysis described in this paper indicate the existence of a correlationship for housing demand and water supply ratio. Using subjective statistical data for the trend of population on regional area, water supply ratio and the number of households, the paper examines the correlationship of forecasting factors for apartments in the ways in which the tendency of demands for apartments and water supply ratio have been analyzed within small and mediumsized city. Differences in the correlationship on the several scale of a city are also taken into account in the analysis. The summary table of the tendency for housing supplies, population and water supply ratio on each scale of a city was generated using data from LAIB. This study attempted to address certain factors that are measurable within a specified paradigm, in order to investigate the extent to which the expectation of apartment supplies can be estimated from the correlationship of water supply ratio. Therefore, it can be suggested that the limited scale of a city are set to maintain the correlationship for housing demands and water supply ratio.

Operation Rule Curve for Reservoir with Low Areal Ratio of Watershed to Downstream Paddy Field (유역배율이 작은 저수지의 이수관리방법)

  • Noh, Jae-Kyoung
    • KCID journal
    • /
    • v.18 no.1
    • /
    • pp.68-80
    • /
    • 2011
  • To provide a operation rule curve for reservoir with low ratio of watershed area to paddy field area, Duckyong reservoir with watershed area of $15.8km^2$ and paddy field area of 1,071ha was selected, in which 4 meters are being heightened and full water levels will be increased from EL.26.0m to EL.30.0m, total water storages from 365.6M $m^3$ to 708.0M $m^3$. There was no operation rule curve that satisfied over 90% reliability of water supply in reservoir with watershed area of 1.48 times of paddy field area. The differences between observed and simulated reservoir daily water storages were minimized to determine parameters for simulating reservoir inflow in case of paddy field area of 550ha from 1991 to 2010. A operation rule curve was drawn to have a maximum storage with total water storage, which was in paddy field area of 700ha with ratio of 2.3 between watershed area and paddy field area. This case showed that annual irrigation water supply was 668M $m^3$ and instream flow of 57M $m^3$, water supply reliability of 55.6% in normal operation, and annual irrigation water supply was 605M $m^3$ and instream flow of 38M $m^3$, water supply reliability of 95.6% in withdrawal limited operation. Water supply reliabilities showed 35.6% without flood regulation and 17.8% with flood regulation in existing reservoir before heightening.

  • PDF

Verification and Calribration of Hydraulic Analysis of Water Supply System Using Fluoride Tracer (불소를 이용한 상수관망 수리해석의 검증 및 보정)

  • Joo, Dae-Sung;Park, No-Suk;Park, Heekyung;Oh, Jung-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.76-82
    • /
    • 1998
  • It is necessary to calculate the accurate velocity from the hydraulic model for the reliable prediction of water quality changes in water supply system. To verify the hydraulic analysis of the water supply system, fluoride was used as a tracer to calculate the travel time from the injection point to the sampling points. Results from this field experiment indicate that fluoride can be a good conservative tracer while it showed a little longitudinal dispersion along the pipe lines. And the velocity from the model was verified by these travel times and calibrated by changing the ratio of the unaccountable water. When the ratio of the unaccountable water. When the ratio of the unaccountable water was 20%, the error between the estimation of hydraulic model and the real travel time was minimum.

  • PDF

Study on characteristic for Larson's ratio of water treatment plants (국내 정수장의 Larson's ratio 특성에 관한 연구)

  • Min, Byung-dae;Chung, Hyen-mi;Ahn, Kyung-hee;Park, Ju-hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.5
    • /
    • pp.579-586
    • /
    • 2016
  • In many countries in order to manage corrosion of water treatment process, it is currently using Langelier index (LI). However, management of the Larson's ratio (LR) to compare corrosion management and LI which can be generated by the water treatment process is required. In this study, in order to ensure data LR, factors associated with the actual corrosion resistance of water treatment plant was measured. Using the measured data, the model equation can be estimated alkalinity, and using the statutory water quality data, LR and alkalinity is estimated. At comparison of the measured value and estimated value of alkalinity, it appeared in $R^2$ = 0.629, using the statutory water quality data and estimated alkalinity model, LR and alkalinity (Whole water treatment plants : 472) is estimated. Concentration of estimated alkalinity is 0.5 mg/L to 107.5 mg/L (average : 23.2 mg/L), and LR is 0.1 to 10 (average : 1.3). At tendency to corrosion of investigated LR, "No metal tendency" (>0.5) is 39 water treatment plants, 8.26 %, and "corrosion metal tendency" is 433 water treatment plants, 91.74%.

Evaluation of Agricultural Water Supply Potential in Agricultural Reservoirs (농업용 저수지에서의 농업용수 잠재능 평가)

  • Kim, Jin Soo;Lee, Jae Yong;Lee, Jeong Beom;Song, Chul Min;Park, Ji Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.65-71
    • /
    • 2016
  • The new concept of agricultural water supply potential, which is mean annual turnover rate times unit storage capacity, was introduced for agricultural reservoirs. We investigated characteristics of mean annual turnover rate and unit storage capacity for agricultural reservoirs with storage capacity of over $1million\;m^3$. The curve of agricultural water supply potential represents change in mean annul turnover rate according to change in unit storage capacity. The mean annual turnover rate and unit storage capacity in the reservoirs with high minimum storage ratio are significantly higher than those in the reservoirs with low minimum storage ratio. Most of unstable water supply reservoirs showed low mean annual turnover rate or low unit storage capacity, indicating that mean annual turnover rate may be an index of stability degree for agricultural water use. The reservoirs with mean annual turnover rate of over 2 and unit storage capacity of over 0.8 m may be estimated as the stable water supply zone for 10 frequency dry year. The reservoirs with high agricultural water supply potential can belong to the wide range of stable water supply zone. The results suggest that relation between mean annual turnover rate and unit storage capacity may be used in evaluating stability degree for agricultural water supply in the reservoirs.

Analysis of the Affecting Factors to the Peak Factor in Water Supply Facilities (우리나라 상수도시설의 첨두부하 영향요소 분석)

  • Hyun, In-hwan;Lee, Che-in
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.1
    • /
    • pp.49-58
    • /
    • 2004
  • This study is to analyze the affecting factors to the peak factor in the drinking water supply Facilities. The peak factor is a very important element to determine the capacity of the water supply facllities. Several factors such as Population served, average day water demand, ratio of domestic water use, ratio of affairs & business water use and water use per capital per day were selected as the affecting factors in this study. In this study, peak factor characteristics for Korean facilities were compared with those for Japanese ones. As a result, non-exceedance probability was suggested as the designing method for the peak factor. Also, the 50% non-exceedance probability values and the 90% values based on the 1998-1999 data were suggested in this study.

Analysis of the Emergency Water Supply Capacity in Agricultural Reservoirs Using K-HAS and Ratio Correction Factors (K-HAS와 비율보정 계수를 이용한 농업용 저수지의 비상연계 용수공급 가능량 분석)

  • Kim, Hayoung;Lee, Sang-Hyun;Na, Ra;Joo, Donghyuk;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.2
    • /
    • pp.59-71
    • /
    • 2023
  • As the frequency of drought increases due to climate change, water scarcity in agriculture would be a main issue. However, it seems difficult to solve the water scarcity by securing alternative water sources. The aim of this study is to analyze optimal water supply capacity of agricultural reservoir for emergency operation connecting reservoirs and dams. First, we simulated the water storage of agricultural reservoir playing the role emergency water supplier to other water facility such as dams and other reservoirs. In particular, the results of simulation of water storage through K-HAS model was calibrated using the optimization process based on ratio correction factors of outflow and inflow. Finally, the optimal amount of water supply securing water supply reliability in emergency interconnection operation was analyzed. The results of this study showed that Janchi reservoir could supply 12.8 thousand m3/day maintaining 90 % water supply reliability. The result of this study could suggest the standard for connecting water facilities as emergency water supply.

Analysis of Water Supply Probability for Agricultural Reservoirs Considering Non-irrigation Period Precipitation using RCP Scenarios (RCP 시나리오 기반 비관개기 강수량을 고려한 농업용 저수지의 용수공급 확률 분석)

  • Bang, Jehong;Choi, Jin-Yong;Lee, Sang-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.63-72
    • /
    • 2018
  • The main function of an agricultural reservoir is to supply irrigation water to paddy rice fields in South Korea. Therefore, the operation of a reservoir is significantly affected by the phenology of paddy rice. For example, the early stage of irrigation season, a lot of irrigation water is required for transplanting rice. Therefore, water storage in the reservoir before irrigation season can be a key factor for sustainable irrigation, and it becomes more important under climate change situation. In this study, we analyzed the climate change impacts on reservoir storage rate at the beginning of irrigation period and simulated the reservoir storage, runoff, and irrigation water requirement under RCP scenarios. Frequency analysis was conducted with simulation results to analyze water supply probabilities of reservoirs. Water supply probability was lower in RCP 8.5 scenario than in RCP 4.5 scenario because of low precipitation in the non-irrigation period. Study reservoirs are classified into 5 groups by water supply probability. Reservoirs in group 5 showed more than 85 percentage probabilities to be filled up from half-filled condition during the non-irrigation period, whereas group 1 showed less than 5 percentages. In conclusion, reservoir capacity to catchment area ratio mainly affected water supply probability. If the ratio was high, reservoirs tended to have a low possibility to supply enough irrigation water amount.