• Title/Summary/Keyword: water resource security

Search Result 55, Processing Time 0.024 seconds

Research on the construction concept and general framework of Smart Water Resource

  • Tian, Yu;Li, JianGuo;Jiang, Yun-zhong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.216-216
    • /
    • 2015
  • Frequent hydro-meteorological events caused by global climate change and human exacerbate activities, make the water resource problem more complicated. The increasing speed urbanization brings a significant impact on the city flood control and security, water supply safety, water ecological security, water environment safety and the water engineering security in China, and puts forward higher requirements to urban water integrated management, undoubtedly which become the biggest obstacle for water ecological civilization construction, thus urgent requiring an advanced methods to enhance the effectiveness of the water integrated management. The other fields of smart ideas point out a development path for water resource development. The construction demand of smart water resource is expounded in the paper, combining the philosophy of modern Internet of things with the application of cloud computing technology. The concept of smart water resource is analyzed, the connotation characteristics of smart water resource is extracted, and the general model of smart water resource is refined. Then, the frame structure of smart water resource is put forward. The connotation and the overall framework of the smart water resource represent a higher level of water resource informationization development and provide a comprehensive scientific and technological support to transform water resource management from an extensive, passive, static, branch and traditional management to a fine, active, dynamic, collaborative and modern management.

  • PDF

Type Drive Analysis of Urban Water Security Factors

  • Gong, Li;Wang, Hong;Jin, Chunling;Lu, Lili;Ma, Menghan
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.784-794
    • /
    • 2020
  • In order to effectively evaluate the urban water security, the study investigates a novel system to assess factors that impact urban water security and builds an urban water poverty evaluation index system. Based on the contribution rates of Resource, Access, Capacity, Use, and Environment, the study adopts the Water Poverty Index (WPI) model to evaluate the water poverty levels of 14 cities in Gansu during 2011-2018 and uses the least variance method to evaluate water poverty space drive types. The case study results show that the water poverty space drive types of 14 cites fall into four categories. The first category is the dual factor dominant type driven by environment and resources, which includes Lanzhou, Qingyang, Jiuquan, and Jiayuguan. The second category is the three-factor dominant type driven by Access, Use, and Capability, which includes Longnan, Linxia, and Gannan. The third category is the four-factor dominant type driven by Resource, Access, Capability, and Environment, which includes Jinchang, Pingliang, Wuwei, Baiyin, and Zhangye. The fourth category is the five-factor dominant type, which includes Tianshui and Dingxi. The driven types impacting the urban water security factors reflected by the WPI and its model are clear and accurate. The divisions of the urban water security level supply a reliable theoretical and numerical basis for an urban water security early warning mechanism.

Assessment of the Impacts of Rice Self-sufficiency on National Rresources in Korea through Water-Energy-Food-Land Nexus Approach (물-에너지-식량-토지 넥서스를 통한 미래 쌀 수급 변화에 따른 자원별 이용량 변화 분석)

  • Lee, Sang-Hyun;Choi, Jin-Yong;Yoo, Seung-Hwan;Hur, Seung-Oh
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.93-103
    • /
    • 2018
  • The aim of this study is to apply the Water-Energy-Food-Land Nexus approach which can analyze the trade-offs among resources, and assess the holistic impacts of food security. First, we applied rice as a study crop and analyzed the trend of consumption of rice and the area of paddy fields. Second, the portfolios of water, energy, and land for rice production were constructed using data of footprints and productivity. Finally, the self-sufficiency ratio (SSR) of rice in target year was set as food security scenario and assessed the impacts of food security on water, energy, and land availability. In 2030, the SSR of rice decreased to 87 %, and water use for producing rice decreased from 4,728 to $3,350million\;m^3$, and the water availability index increased from 0.33 to 0.53. However, food security is essential issue and we set the 50 % and 100 % SSR of rice as high and low food security scenarios. For 100% SSR in 2030, about $3,508million\;m^3$ water was required and water availability index reached to 0.5. In other words, there is the trade-off between food security and water-energy-lands availability. Therefore, it is difficult to make a decision whether a high level of SSR is better or worse. However, this study showed the both positive and negative impacts by change of food security and it can be useful for setting the policy decision considering both food security and sustainable resource management at the same time.

The Analysis of Water Supply Capacity using Reliability Criteria - for the Nakdong River Basin - (신뢰성 기준을 적용한 용수공급능력의 해석 - 낙동강유역을 중심으로 -)

  • 차상화;지홍기;이순탁
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1227-1233
    • /
    • 2002
  • In general, the evaluation of water supply capacity is important factor to establish various establishment of water resource supply plan include water resource security and determination of dam's mass. But former researchs about estimation of water supply capacity were lack in continunity of evaluation basis, and didn't excute analysis on reliability criteria also. In this study, Nakdong river was selected for study basin, and then water supply capacity was analyzed by HEC-5 model using identical reliability criteria.

Results Of Mathematical Modeling Of Organizational And Technological Solutions Of Effective Use Of Available Resource Of Modern Roofs

  • Arutiunian, Iryna;Mishuk, Katerina;Dankevych, Natalia;Yukhymenko, Artem;Anin, Victor;Poltavets, Maryna;Sharapova, Tetiana
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.49-54
    • /
    • 2021
  • Relative to the outer surface of the mastic coating, the reliability of the available waterproofing resource is determined by the ability to stabilize the structural characteristics in difficult climatic conditions. Organic components of mastic as a result of solar radiation, elevated temperatures and their alternating change, atmospheric oxidants, especially in industrial areas, have a tendency to self-polymerization and loss of low molecular weight components. This is the gradual loss of deformability and the transition to brittleness with its tendency to crack as the reasons for the gradual transition from normal to emergency operating condition.The presented mechanism of functioning of the coating surface indicates the expediency of increasing its components, able to stabilize the structure and prevent changes in deformability.Durability, hydrophobicity, water displacement, water absorption are accepted as estimating indicators. The main dependences of the influence of the lost additional components of mastic on the operational properties of the formed coating characterize the ability to provide successful resistance to environmental influences and longer stability. As a result, mastic acquires additional service life.

화강암 균열에서의 수리학적 거동 특성

  • 김종태;정교철;부성안;김진성;김혜빈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.468-471
    • /
    • 2004
  • Groundwater development as a means of acquiring subsidiary water resource is very important for the persistent security of water resource. Nowadays, pneumatic fracturing technology which was developed in the advanced countries is applied for increasing pumping rate and eliminating contaminants. From the results of this study, hydraulic aperture and permeability are presented.

  • PDF

Property Analysis of the Water Quality in Mankyeong River (만경강 수질자료 특성분석)

  • Kim, Won-Jang;Jo, Guk-Hyun;Eom, Myung-Chul;Lee, Kwang-Ya
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.437-440
    • /
    • 2002
  • By the explosive increase of population and industrialization the security of water resources is required, and water resource pollution problem is emerging as a serious social issue. For the ongoing Saemankeum project, lots of efforts are being put together to manage the water quality of the Saemankeum above a certain level, and it is sure that water quality management problem of main inflows from Mankyung River and Dongjin River is very important. Based upon the water quality data of Mankyung River this report examines its correlative characteristics by water quality sampling point factors and the water pollution resource factors, and subjects to provide elementary data for efficient water quality management of Mankyung River.

  • PDF

Opportunities for Agricultural Water Management Interventions in the Krishna Western Delta - A case from Andhra Pradesh, India

  • Kumar, K. Nirmal Ravi
    • Agribusiness and Information Management
    • /
    • v.9 no.1
    • /
    • pp.7-17
    • /
    • 2017
  • Agricultural water management has gained enormous attention in the developing world to alleviate poverty, reduce hunger and conserve ecosystems in small-scale production systems of resource-poor farmers. The story of food security in the $21^{st}$ century in India is likely t o be closely linked to the story of water security. Today, the water resource is under severe threat. The past experiences in India in general and in Andhra Pradesh in particular, indicated inappropriate management of irrigation has led to severe problems like excessive water depletion, reduction in water quality, water logging, salinization, marked reduction in the annual discharge of some of the rivers, lowering of ground water tables due to pumping at unsustainable rates, intrusion of salt water in some coastal areas etc. Considering the importance of irrigation water resource efficiency, Krishna Western Delta (KWD) of Andhra Pradesh was purposively selected for this in depth study, as the farming community in this area are severely affected due to severe soil salinity and water logging problems and hence, adoption of different water saving crop production technologies deserve special mention. It is quite disappointing that, canals, tube wells and filter points and other wells could not contribute much to the irrigated area in KWD. Due to less contribution from these sources, the net area irrigated also showed declining growth at a rate of -6.15 per cent. Regarding paddy production, both SRI and semi-dry cultivation technologies involves less irrigation cost (Rs. 2475.21/ha and Rs. 3248.15/ha respectively) when compared to transplanted technology (Rs. 4321.58/ha). The share of irrigation cost in Total Operational Cost (TOC) was highest for transplanted technology of paddy (11.06%) followed by semi-dry technology (10.85%) and SRI technology (6.21%). The increased yield and declined cost of cultivation of paddy in SRI and semi-dry production technologies respectively were mainly responsible for the low cost of production of paddy in SRI (Rs. 495.22/qtl) and semi-dry (Rs. 532.81/qtl) technologies over transplanted technology (Rs. 574.93/qtl). This clearly indicates that, by less water usage, paddy returns can be boosted by adopting SRI and semi-dry production technologies. Both the system-level and field-level interventions should be addressed to solve the issues/problems of water management. The enabling environment, institutional roles and functions and management instruments are posing favourable picture for executing the water management interventions in the State of Andhra Pradesh in general and in KWD in particular. This facilitates the farming community to harvest good crop per unit of water resource used in the production programme. To achieve better results, the Farmers' Organizations, Water Users Associations, Department of Irrigation etc., will have to aim at improving productivity per unit of water drop used and this must be supported through system-wide enhancement of water delivery systems and decision support tools to assist farmers in optimizing the allocation of limited water among crops, selection of crops based on farming situations, and adoption of appropriate alternative crops in drought years.

The Systematic Evaluation of the SCADA Proposals for Dam and Water Supply Office (감시제어 시스템의 체계적 기술평가 방안)

  • Paik, D.H.;Lee, E.W.;Lim, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.149-151
    • /
    • 1997
  • Korea Water Resources Corporation (KOWACO) has used hard wired sequential control system for dams and SCADA / DCS for water supply offices. The control system, which consists of automatic control, communication and computer science, has to look for the security of operation and the quality of generated power and treated water. In this paper, we would like to propose the systematic evaluation of technical proposals such as purpose, method/procedure, evaluation criteria and report preparation.

  • PDF

A Estimation Study on Water Integration Management Model using Water-Energy-Food-Carbon Nexus - Focused on Yeongsan River - (물-에너지-식량-탄소 넥서스를 이용한 통합물관리 모델 평가 연구 - 영산강 수계를 중심으로 -)

  • Na, Ra;Park, Jin-hyeon;Joo, Donghyuk;Kim, Hayoung;Yoo, Seung-Hwan;Oh, Chang-Jo;Lee, Sang-hyun;Oh, Bu-Yeong;Hur, Seung-oh
    • Journal of Korean Society of Rural Planning
    • /
    • v.29 no.1
    • /
    • pp.37-49
    • /
    • 2023
  • Active attention and effort are needed to develop an integrated water management system in response to climate change. In this study, it proposed models for cross-use of agricultural water and river maintenance water using sewage treatment water as an integrated water management system for the Yeongsan River. The impact of the integrated water management models was assessed by applying the concept of Nexus, which is being presented worldwide for sustainable resource management. The target year was set for 2030 and quantitatively analyzed water, energy, land use and carbon emissions and resource availability index by integrated water management models was calculated by applying maximum usable amount by resource. An integrated water management system evaluation model using the Nexus concept developed in this study can play a role that can be viewed in a variety of ways: security and environmental impact assessment of other resources. The results of this research will be used as a foundation for the field of in the establishment of a policy decision support system to evaluate various security policies, as we analyzed changes in other factors according to changes in individual components, taking into account the associations between water, energy, food, and carbon resources. In future studies, additional sub-models need to be built that can be applied flexibly to changes in the future timing of the inter-resource relationship components.