• Title/Summary/Keyword: water repellent agent

Search Result 41, Processing Time 0.023 seconds

Evaluation of Applicability of penetrating-type Nano-Coat for Preventing Deterioration of Concrete (침투형 Nano-Coat를 이용한 콘크리트 열화 방지 적용성 평가)

  • Lee, Jun Hee;Kim, Jo Soon;Sim, Yang Mo;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.7-15
    • /
    • 2017
  • PURPOSES : Infiltration of moisture, polluted material, and deicer into concrete, accompanied by freeze and thaw can cause significant deterioration of concrete pavement. In order to protect concrete from deterioration, it is necessary to prevent the infiltration of these concrete external materials. The moisture-repellent agent, which is a surface treatment and maintenance material added to concrete structures to render them water resistant, has advantages such as prevention of water infiltration and security against air permeation. Nano-coat, which is referred to as silicon hydride, is typically used as a moisture-repellent agent. Therefore, in this study, an attempt is made to use penetration-type Nano-coat as an alternative in order to evaluate its applicability through environmental resistance tests. METHODS : This study aimed to evaluate the applicability of penetration-type Nano-coat, which can provide water repellency to concrete, in concrete pavements, through various environmental resistance tests such as freezing and thawing resistance, chloride ion penetration resistance, and surface scaling resistance tests. The applicability of penetration-type Nano-coat was demonstrated based on the specification of KS F 2711, KS F 2456, and ASTM C 672. RESULTS :In the case of penetration-type Nano-coat applied on sound concrete, an increase in concrete durability was demonstrated by the negligible chloride ion penetrability and the absence of scaling, as revealed by visual observation of the surface, after 50 cycles of scaling resistance test. In addition, test result of the application of penetration-type Nano-coat on deteriorated concrete established that concrete surface pretreated by grinding provided improved durability than non-treated concrete. CONCLUSIONS :This study indicates that penetration-type Nano-coat is applicable as an effective alternative, to increase the durability of concrete structures. In addition, it was known that pretreatment of deteriorated concrete surface, such as grinding, is required to improve the long-term performance of concrete pavement.

Manufacture of Water-Resistant Corrugated Board Boxes for Agricultural Products in the Cold Chain System(II) - Application Methods of Chemicals for Improving Water and Moisture Resistance of Corrugated Boards - (농산물 저온유통용 내수 골판지 상자의 제조(제2보) - 골판지의 내수 및 내습성 향상을 위한 약품 적용 방법 -)

  • Jo, Jung-Yeon;Min, Choon-Ki;Shin, Jun-Seop
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2004.04a
    • /
    • pp.192-210
    • /
    • 2004
  • Application methods of chemicals were investigated tn minimize strength reduction of corrugated boards under the high humidity environment encountered in the cold chain system. Starch insolubilizers were introduced in the starch solution preparation of the Stain hall method and their insolubilization effect of starch binder were estimated. The performance of water repellent agents(WRA) and moisture proof agents(MPA) were evaluated in terms of water and moisture resistance. And effects of the combination of the chemicals and the coating method were also examined. Addition of the polyamine polyamide insolubilizer to the main part in the Stain hall process improved the binding force and water resistance of starch, which contributed to minimize the strength reduction of paper under the high humidity environment. AZC and Glyoxal type insolubilizers could not be used in the experiment due to an excessively increased viscosity of starch solution and the poor stability. Conventional WRA treatment to the base paper enhanced water and moisture resistance very slightly even though water repellency of the paper reached R10 by the treatment. MPA showed excellent performance than WRA not only in water and moisture resistance but in water repellency. Double coating on paper with MPA was more effective than the single coating at the same coating weight. A newly developed MPA showed excellent performance and runnability only by a single coating instead of a double coating.

  • PDF

Manufacture of Water-Resistant Corrugated Board Boxes for Agricultural Products in the Cold Chain System(II). -Application Methods of Chemicals for Improving Water and Moisture Resistance of Corrugated Boards- (농산물 저온유통용 내수 골판지 상자의 제조(제2보) - 골판지의 내수 및 내습성 향상을 위한 약품 적용 방법 -)

  • 조중연;민춘기;신준섭
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.2
    • /
    • pp.60-69
    • /
    • 2004
  • Application methods of chemicals were investigated to minimize strength reduction of corrugated boards under the high humidity environment encountered in the cold chain system. Starch insolubilizers were introduced in the starch solution preparation of the Stein hall method and their insolubilization effect of starch binder were estimated. The performance of water repellent agents(WRA) and moisture proof agents(MPA) were evaluated in terms of water and moisture resistance. And effects of the combination of the chemicals and the coating method were also examined. Addition of the polyamine polyamide insolubilizer to the main part in the Stein hall process improved the binding force and water resistance of starch, which contributed to minimize the strength reduction of paper under the high humidity environment. AZC and Glyoxal type insolubilizers could not be used in the experiment due to an excessively increased viscosity of starch solution and the poor stability. Conventional WRA treatment to the base paper enhanced water and moisture resistance very slightly even though water repellency of the paper reached R10 by the treatment. MPA showed excellent performance than WRA not only in water and moisture resistance but in water repellency. Double coating on paper with MPA was more effective than the single coating at the same coating weight. A newly developed MPA showed excellent performance and runnability only by a single coating instead of a double coating.

A Study on the Preparation of Durable Softening Water-repellent by Blending Acrylic Copolymer and Fatty Carbamide;IV. Water-repellent Finish of P/C Blended Fabrics (아크릴 공중합체와 지방산 카르바미드의 블렌딩에 의한 내구유연발수제의 제조에 관한 연구;IV. P/C 혼방직물에의 발수가공)

  • Ko, Jae-Yong;Hong, Eui-Suk;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.39-46
    • /
    • 1996
  • Durable softening water-repellenting agent such as PODCW, PDDCW and PEDCW were prepared by blending cationized compound such as poly(octadecyl methacrylate-co-2-diethylaminoethyl methacrylate)[PODC], poly(2-dodecyl methacrylate-co-2-diethyl-aminoethyl methacrylate)[PDDC] and poly(2-ethylhexyl methacrylate-co-2-diethyl-aminoethyl methacrylate)[PEDC], and cationized compound of fatty carbamide, of which synthetic methods were reported in the previous paper, waxes, and emulsifiers. The results of physical tests of the P/C blended fabrics treated with PODCW, PDDCW and PEDCW with and without textile finishing resin, showed a remarkable improvement of the physical properties. The prepared water-repellenting agents, PODCW-6 and PDDCW-1, were treated on P/C blended fabrics with and without resin. For any cases, there are a little changes between initial water repellency and repellency after 3 times washing of the fabrics. Therefore, the water-repellenting agents proved to be a durable agents, and initial water $100^{+}$ and $90^{+}$ point, respectively.

A Study on Carbonation Resistance of Concrete Using Surface-coated Lightweight Aggregates (표면코팅된 경량골재를 사용한 콘크리트의 탄산화 저항성에 관한 연구)

  • Eom, In-Hyeok;Jeong, Euy-Chang;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • The purpose of this study is to investigate the mechanical properties and carbonation resistance of concretes using lightweight aggregate coated surface finishing materials. To evaluate the mechanical properties and carbonation resistance of concrete, slump, air amount, air-dried unit volume weight, compressive strength, and carbonation depth are tested. In terms of the unit volume weight of concrete, air-dried unit volume weight of concrete using coating lightweight aggregate was measured as $1,739{\sim}1,806kg/m^3$. When using coating aggregate, compressive strength of concrete at 28 days was measured as much as 82.7~95.9% of the compressive strength using non-coating aggregate. It is found that compressive strength tends to decrease with coating lightweight aggregate. However, all concretes using coating lightweight aggregate except O-LWAC satisfied the criteria for 28-day compressive strength suggested in KS. The measurement of carbonation depth when the water-repellent agent was used found that carbonation depth was reduced by as much as 2.6~6.1%. On the other hand, when using polymer waterproof agent, carbonation depth was reduced by as much as 8.6~12.0%. Consequently, to improve carbonation resistance, polymer waterproof agent was more effective than water-repellent agent. In particular, epoxy showed the most outstanding performance.

Characterization of Emulsion Properties for Modified Amino Polysiloxanes (아미노 변성 폴리실록산의 유화 특성)

  • 하윤식;서무룡;이정경;박경일;장윤호
    • Journal of Environmental Science International
    • /
    • v.8 no.1
    • /
    • pp.61-67
    • /
    • 1999
  • Silicone oil has organic and inorganic properties, and its skeleton is polysiloxane bonding that silicon is bonded hydrogen or organic group. Silicone compounds are very smooth and lubricant properties by low surface tension, low temperature dependence, and nonadhesive properties. Because of these properties, silicone compounds are used as many parts of chemicals, softener, smooth and libricant agents, water-repellent agent, and defoaming agent, etc. Emulsion was prepared with the inversion emulsification method which adopted the agent-in-oil method dissolving the polyoxyethylene(7) tridecyl ether(HLB 12.2) into methoxy terminated poly(dimethyl-co-methyl amino) siloxane and hydroxy terminated poly(dimethyl-co-methyl amino) siloxane in water. At this time, processed emulsion was almost microemulsion. When ratio of emulsifier increases, emulsion is stable bacuause microemulsion is solubilized by emulsion drop size and zeta-potential are decreased. But, when amount of electrolyte is increase, emulsion became unstable because emulsion drop size is increased.

  • PDF

Fabrication of Waterproof and Moisture-permeable Polyurethane Nanofiber Multi-Membrane (투습방수성 Polyurethane 나노섬유 Multi-Membrane의 제조)

  • Yang, Jeong-Han;Yoon, Nam-Sik;Kim, In-Kyo;Yeum, Jeong-Hyun
    • Textile Coloration and Finishing
    • /
    • v.23 no.2
    • /
    • pp.107-117
    • /
    • 2011
  • Polyurethane (PU) was synthesized by one-shot process and the PU nanofiber was prepared by electrospinning. In this study, electrospun PU multi-membranes were prepared with various coating thickness ratio of base resin to top resin, where the base resin contains melamine curing agent and acid catalyst and the top resin contains water-repellent agent of fluoro-carbon compounds. The PU nanofiber multi-membranes were analyzed by field-emission scanning electron microscopy, differential scanning calorimeter, breathability, tensile strenth, air permeability and water resistance. The results showed that the PU multi-membrane provided excellent waterproof and moisture permeability.

Evaluation of Concrtet Properties Using Silicon-Based Repellent (실리콘기반 침투강화제를 사용한 콘크리트의 내구특성 평가)

  • Hwang, Byoung-Il;Kim, Hyo-Jung;Lee, Byung-Jae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.295-301
    • /
    • 2019
  • Currently, the most commonly used decontamination agent in the country is calcium chloride, and the use of decontamination agents nationwide is on the rise due to climate change in the country. The deicing agent, aimed at deicing snow, is sprayed and the chloride is frozen and thawed by the dissolved surface water, causing various damages such as deterioration to the concrete. Therefore, in this study, the reactive urethane polymer was manufactured to coat concrete surface protection material, which is a method that prevents moisture from externally penetrating by applying to concrete surfaces, and the mixing agent was selected through the size control of molecules and surface modification, and the properties of penetrant stiffening agents and the application method of concrete was evaluated.

Improvement in Water Resistance of Desulfurized Gypsum by Novel Modification of Silicone Oil Paraffin Composite Emulsion-based Waterproofing Agent

  • Cao, Jing-Yu;Li, Jin-Peng;Jiang, Ya-Mei;Wang, Su-Lei;Ding, Yi;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.558-565
    • /
    • 2019
  • In this study, dimethyl silicone oil and liquid paraffin were combined and subsequently emulsified; the resulting mixture was innovatively incorporated into desulfurized gypsum to resolve its drawback of a poor water resistance. The waterproof mechanism of the composite emulsion and liquid paraffin emulsion with mass fractions of 1%, 2%, 3%, and 4% were investigated. The effect of the desulfurized gypsum on the waterproof performance and basic mechanical properties were also investigated. The configuration of the composite waterproofing agent was characterized by FTIR and 1HNMR. The results showed that, compared with the traditional liquid paraffin emulsion-based waterproofing agent, the softening coefficient of the silicone oil paraffin composite emulsion-based water-repellent agent was increased by 60% and attained a value of 0.89. Combined with the waterproof mechanism and microscope morphology analysis of gypsum hydration products, the improvement in the water resistance of water resistance was primarily attributed to the formation of a silicone hydrophobic membrane between the crystals of the gypsum block; this ensured that water could not penetrate the crystal.