• Title/Summary/Keyword: water recovery

Search Result 1,844, Processing Time 0.025 seconds

A Study on the Development of Active Circulating Type Oil Recovery Vessel

  • Lee, Kji-Joo;Shugan, Igor V.;An, Jung-Sun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.1-6
    • /
    • 2007
  • A study on the new active circulation type oil-water separation system including buoyancy type guidance system was carried out in this paper. Newly developed oil-water separation system is composed of several oil separation steps. In the beginning of these steps, buoy type separation system would be used. Buoy type oil guiding system was developed based on the difference of density of water and oil.

Characterization of gas-water flow in tight sandstone based on authentic sandstone micro-model

  • Liu, Yuqiao;Lyu, Qiqi;Luo, Shunshe
    • Geosystem Engineering
    • /
    • v.21 no.6
    • /
    • pp.318-325
    • /
    • 2018
  • Eight tight sandstone reservoir samples from $He_8$ and $Shan_1$ Formations of the Sulige Gas field were selected to perform gas-water micro-displacement experiment based on authentic sandstone micro-model. The gas pressure-relief experiment was proposed for the first time to simulate the pressure change and gas-water percolation characteristics in the process of gas exploitation. The experiment results show that: (1) In the process of gas accumulation, the gas preferentially flows into the well-connected pores and throats with large radius, but rarely flows into the area without pores and throats. (2) Under sufficient gas drive, the water in pores and throats usually exists in the forms of 'thin water film', 'thick water film', and 'water column', but under insufficient gas drive, gas fails to flow into new pathways in time, so that the reservoirs with large pores and throats are high in water cut. (3) Under the same water saturation, the reservoirs with better petrophysical properties has higher gas recovery factor within unit time. Under the same petrophysical conditions, the reservoirs with lower water saturation show higher gas recovery factor within unit time. The higher the permeability, the stronger the liquid carrying capacity of reservoirs.

Treatment of Secondary Municipal Wastewater by Submerged Hollow Fiber MF Membranes for Water Reuse (침지형 MF 중공사막을 이용한 하수 2차 처리수의 재이용 연구)

  • Hyun, Seunghoon;Kim, Eung Do;Hong, Seungkwan;Ahn, Wonyoung;Yim, Seongkeun;Kim, Geontae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.47-52
    • /
    • 2005
  • This study was conducted to evaluate the performance of submerged hollow fiber MF processes to treat secondary wastewater for water reuse. Specifically, membrane productivity and filtrate water quality were investigated under various operating conditions (i.e. flux, recovery, and backwash rate) at pilot-scale. Membrane fouling became more severe with increasing flux and recovery, suggesting that low flux operation (< 25 LMH) was desirable. At high flux operating(> 37.5 LMH), increasing backwash rate showed only limited success. The biofouling, quantified by PEPA and BFHPC, was also significant in wastewater reclamation, and biogrowth control by chlorine, were necessary to improve membrane productivity. Filtrate water qualities are in good compliance with water reuse regulations regardless of operating conditions (flux, recovery and backwash rate). Particle (e.g. turbidity) removal ranged from 89 to 98%, while only 11 to 21% of organics (e.g. NPDOC) were removed by MF membrane. Only small improvement in biostability (e.g. AOC) was achieved by MF system, and thus, without post disinfection, significant microorganisms might be present in the filtrate due to regrowth. Lastly, in order to further investigate pathogen removal, controlled microbial challenge tests were performed by monitoring Giardia, Cryptosporidium, bacteria and virus, and showed relatively good microbial removal.

Drying Stream and Hydrological Environment for Gwangjucheon (광주천의 건천화와 수문환경문제)

  • Yang, Hea-Kun
    • Journal of the Korean association of regional geographers
    • /
    • v.10 no.3
    • /
    • pp.568-578
    • /
    • 2004
  • This study is aimed at investigating floodgate characteristics and environmental issues in Gwangjucheon and examining possible problems of expanding river maintenance water being carried on in the context of river recovery works. In general, the obtained results show the following. The treatment water provisioned in the restoration project of the drying stream going through the water circulation device can pollute the land and groundwater in the Gwangjucheon Basin. Besides, although about $17,565m^3$/day of water is available in the upper ground, most of it go to the junction and exhausting directly to the waste water treatment or going into the groundwater. Because of the drying stream, the amount of water going to the ground is increased. Therefore, efficient land use along with regulations to protect cultivated land and ensure recovery works of city stream through the recovery of water circulation by constructing and expanding a special drainage system are of vital importance.

  • PDF

Simulation of Contaminant Draining Strategy with User Participation in Water Distribution Networks

  • Marlim, Malvin S.;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.146-146
    • /
    • 2021
  • A contamination event occurring in water distribution networks (WDNs) needs to be handled with the appropriate mitigation strategy to protect public health safety and ensure water supply service continuation. Typically the mitigation phase consists of contaminant sensing, public warning, network inspection, and recovery. After the contaminant source has been detected and treated, contaminants still exist in the network, and the contaminated water should be flushed out. The recovery period is critical to remove any lingering contaminant in a rapid and non-detrimental manner. The contaminant flushing can be done in several ways. Conventionally, the opening of hydrants is applied to drain the contaminant out of the system. Relying on advanced information and communication technology (ICT) on WDN management, warning and information can be distributed fast through electronic media. Water utilities can inform their customers to participate in the contaminant flushing by opening and closing their house faucets to drain the contaminated water. The household draining strategy consists of determining sectors and timeslots of the WDN users based on hydraulic simulation. The number of sectors should be controlled to maintain sufficient pressure for faucet draining. The draining timeslot is determined through hydraulic simulation to identify the draining time required for each sector. The effectiveness of the strategy is evaluated using three measurements, such as Wasted Water (WW), Flushing Duration (FD), and Pipe Erosion (PE). The optimal draining strategy (i.e., group and timeslot allocation) in the WDN can be determined by minimizing the measures.

  • PDF

Effects of electric current on electrocoagulation for optimal harvesting of microalgae for advanced wastewater treatment (하수고도처리용 미세조류의 최적회수를 위한 전기응집기술 적용에 있어 전류의 영향)

  • Lee, SeokMin;Joo, Sung Jin;Choi, Kyoung Jin;Zhang, Shan;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.473-478
    • /
    • 2014
  • Microalgae is known as one alternative energy source of the fossil fuel with the small size of $5{\sim}50{\mu}m$ and negative charge. Currently, the cost of microalgae recovery process take a large part, about 20 - 30% of total operating cost. Thus, the microalgae recovery method with low cost is needed. In this study, the optimum current for Scenedesmus dimorphus recovery process using electrocoagulation techniques was investigated. Under the electrical current, Al metal in anode electrode is oxidized to oxidation state of $Al^{3+}$. In the cathode electrode, the water electrolysis generated $OH^-$ which combine with $Al^{3+}$ to produce $Al(OH)_3$. This hydroxide acts as a coagulant to harvest microalgae. Before applying in 1.5 L capacity electrocoagulation reactor, Scenedesmus dimorphus was cultured in 20 L cylindrical reactor to concentration of 1 OD. The microalgae recovery efficiency of electrocoagulation reactor was evaluated under different current conditions from 0.1 ~ 0.3 A. The results show that, the fastest and highest recovery efficiency were achieved at the current or 0.3 A, which the highest energy efficiency was achieved at 0.15 A.

An Experimental Study on Energy Consumption of Air Washer Outdoor Air Conditioning Systems for Semiconductor Manufacturing Clean Rooms (반도체 클린룸용 에어와셔 외기공조시스템의 에너지소비량에 관한 실험적 연구)

  • Kim, Ki-Cheol;Kim, Hyung-Tae;Song, Gen-Soo;Yoo, Kyung-Hoon;Son, Seung-Woo;Shin, Dae-Kun;Park, Dug-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.297-305
    • /
    • 2012
  • In recent large-scale semiconductor manufacturing clean rooms, the energy consumption of outdoor air conditioning systems to heat, humidify, cool and dehumidify incoming outdoor air represents about 45% of the total air conditioning load required to maintain a clean room environment. Therefore, the energy performance evaluation and analysis of outdoor air conditioning systems is useful for reducing the outdoor air conditioning load for a clean room. In the present study, an experiment was conducted to compare the energy consumption of outdoor air conditioning systems with a simple air washer, an exhaust air heat recovery type air washer and a DCC return water heat recovery type air washer. It was shown from the present lab-scale experiment with an outdoor air flow of 1,000 $m^3/h$ that the exhaust air heat recovery type and DCC return water heat recovery type air washer outdoor air conditioning systems were more energy-efficient for the summer and winter operations than the simple air washer outdoor air conditioning system and furthermore, the DCC return water heat recovery type one was the most energy-efficient in the winter operation.

Effects of Using Illite Warm Water Mats on Lactate, CRP and ACR Induced High Intensity Exercise in Adults (일라이트 온수매트 사용이 고강도 운동으로 유발된 성인의 젖산, CRP, ACR에 미치는 영향)

  • Choi, Youngjun;Kim, Hyunjun
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.4
    • /
    • pp.133-142
    • /
    • 2020
  • Purpose : The purpose of this study was to investigate the effective recovery method of exercise-induced fatigue and muscle pain by comparing the effect of the use of illite hot mat product and general hot mat product on the recovery of muscle pain induced by high intensity exercise. Methods : To measure and analyze the changes in lactic acid, CRP, and ACR according to the high-intensity circuit training program, this study was conducted for the healthy adult men and women, who exercise st the K-region sports center. A total of 45 subjects were studied in 15 groups of 15 patients who received an illite hot-water mat recovery group (A group), 15 general hot-water mat recovery group (B group), and 15 control group (C group). The circuit training exercise program was conducted as a one-time exercise, and each exercise time consisted of 30 minutes of warm-up exercise, 5 minutes of main exercise, 20 minutes of clean-up exercise, and 5 minutes of strength exercise. The intensity setting was high intensity of subjective exercise intensity It carried out by setting to (14-16RPE). Results : Changes in Lactic Acid Concentration There was a significant difference in the lactic acid concentrations between the groups after the high intensity circuit training program (p <.05). The illite rest group (A) decreased 7.71 mmol / L and the control group decreased 4.03 mmol / L. Significantly decreased (p <.05). Changes in ACR Concentration. There was a significant difference in the ACR concentrations Significant differences were found in CRP and ACR during the recovery period after exercise. (p <.05), the elite rest group (A) decreased 2.47 mg / mmol, and the control group increased 1.63 mg / mmol. There was a significant difference (p <.05). Conclusion: The static rest on a heated mat after high-intensity exercise has an effect on changes in blood lactate and ACR levels.

Lithium Recovery from NCM Lithium Ion Battery by Hydrogen Reduction Followed by Water Leaching (NCM계 리튬이온 배터리 양극재의 수소환원과 수침출에 의한 리튬 회수)

  • So-Yeong Lee;So-Yeon Lee;Dae-Hyeon Lee;Ho-Sang Sohn
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.15-21
    • /
    • 2024
  • The demand for electric vehicles powered by lithium-ion batteries is continuously increasing. Recovery of valuable metals from waste lithium-ion batteries will be necessary in the future. This research investigated the effect of reaction temperature on the lithium recovery ratio from hydrogen reduction followed by water leaching from lithium-ion battery NCM-based cathode materials. As the reaction temperature increased, the weight loss ratio observed after initiation increased rapidly owing to hydrogen reduction of NiO and CoO; at the same time, the H2O amount generated increased. Above 602 ℃, the anode materials Ni and Co were reduced and existed in the metallic phases. As the hydrogen reduction temperature was increased, the Li recovery ratio also increased; at 704 ℃ and above, the Li recovery ratio reached a maximum of approximately 92%. Therefore, it is expected that Li can be selectively recovered by hydrogen reduction as a waste lithium-ion battery pretreatment, and the residue can be reprocessed to efficiently separate and recover valuable metals.

Application and Assessment on the Effectiveness of the Hazard-Based Deployment Model for Oil Recovery Capacity on Water (위해도 기반 해상기름회수능력 배치모델 적용 및 유효성 평가)

  • Ha, Min-Jae;Moon, Jung-Hwan;Yun, Jong-Hwui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.486-490
    • /
    • 2014
  • In this study, the Hazard-based model to decide regional oil recovery capacity by using AHP is suggested and regional oil recovery capacity is calculated by applying the model. The simulation for oil recovery capacity by mobilization of regional oil recovery equipments is carried out to verify the availability of the model. The worst oil spill accident in Daesan Taean Pyeongtaek region, which is located in geographically disadvantageous position among the regions that the worst oil spill accident may occur, is supposed for the simulation. As a result of simulation, the quantity of oil that can be recovered for three days on the scene of oil spill accident is worked out as $15,841k{\ell}$, which can satisfy the goal of national oil recovery capacity for the worst oil spill accident, therefore the model is verified as practicable.