• Title/Summary/Keyword: water quality parameters

Search Result 1,072, Processing Time 0.028 seconds

biotic Indices as Assessment tools of Water Quality in the Han River System, Korea (생물지수를 이용한 북한강 수계에서의 생물학적 수질 평가)

  • 정평림;정영헌;어성준;김재진;최선근
    • The Korean Journal of Ecology
    • /
    • v.21 no.6
    • /
    • pp.759-770
    • /
    • 1998
  • biotic indices scoring with the benthic macroinvertebrates were assessed as pollution monitoring tools in the north branch of the Han River system, Korea. We investigated the temporal variability of water quality at unpolluted, moderately polluted and heavily polluted sites using several biotic indices and assessed appropriate biological monitoring indices for lotic systems in Korea. The following biotic and chemical indices were employed in order to compare their applicability to the lotic systems : Trent Biotic Index (TBI), Chandler's Biotic Index-Average Score per Taxon (CBI-ASPT), Modified Biological Monitoring Working Party Score System-Average Score per Taxon (BMWP-ASPT), Hilsenhoff's biotic Index (BI) and Family-level Biotic Index (FBI) models for biotic analyses and National Sanitation foundation's Water Quality Index (NSFWQI) and comprehensive Chemical Pollution Index (Pb/n) for chemical analyses of water quality. Index and score values were compared with each other and with 24 water chemistry parameters. All biotic indices were significantly auto-correlated (p<0.001) and BI and FBI/ROK among them were highly correlated (r=0.84). BI and BMWP-ASPT models were also highly correlated with NSFWQI, while TBI values showed high correlation with the Pb/n. The BI and BMWP-ASPT were highly correlated with the most water chemistry parameters. We conclude that the BI model, which includes indicator species and abundance of taxa, is best suited for the bioassessment of lotic systems in Korea. For rapid field-based assessments, FBI/ROK and BMWP-ASPT models are also appropriate.

  • PDF

Estimating Pollutant Loading Using Remote Sensing and GIS-AGNPS model (RS와 GIS-AGNPS 모형을 이용한 소유역에서의 비점원오염부하량 추정)

  • 강문성;박승우;전종안
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.1
    • /
    • pp.102-114
    • /
    • 2003
  • The objectives of the paper are to evaluate cell based pollutant loadings for different storm events, to monitor the hydrology and water quality of the Baran HP#6 watershed, and to validate AGNPS with the field data. Simplification was made to AGNPS in estimating storm erosivity factors from a triangular rainfall distribution. GIS-AGNPS interface model consists of three subsystems; the input data processor based on a geographic information system. the models. and the post processor Land use patten at the tested watershed was classified from the Landsat TM data using the artificial neural network model that adopts an error back propagation algorithm. AGNPS model parameters were obtained from the GIS databases, and additional parameters calibrated with field data. It was then tested with ungauged conditions. The simulated runoff was reasonably in good agreement as compared with the observed data. And simulated water quality parameters appear to be reasonably comparable to the field data.

Characteristics and Improvement of Tap Water Corrosivity in Korea (국내 수돗물의 부식성 특성 및 개선방안)

  • Kim, Jin-Keun;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.731-739
    • /
    • 2011
  • To investigate corrosivity characteristics of tap water in Korea, Langelier index (LI) of 30 multi-regional water treatment plants (WTPs) were evaluated. Weekly LI values of 30 WTPs were all negative, which means tap water in Korea might be very corrosive. Maximum LI decrease through water treatment processes was 0.95 under no additional corrosion control process. Based on the correlation results between LI and tap water qualities, pH and calcium concentration were confirmed as major parameters for LI control. Addition of calcium hydroxide with $CO_{2}$ or calcium hydroxide or sodium hydroxide can be chosen based on water quality. Continuous monitoring of LI and related parameters is recommended in water distribution system.

Development of an Expert System to Improve the Methods of Parameter Estimation (매개변수 추정방법의 개선을 위한 전문가 시스템의 개발)

  • Lee, Beom-Hui;Lee, Gil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.641-655
    • /
    • 1998
  • The methods of development and application of an expert system are suggested to solve more efficiently the problems of water resources and quality induced by the rapid urbanization. Major parameters of the water quantity and quality of urban areas are selected their characteristics are presented by the sensitivity analysis. The rules to decide the parameters effectively are proposed based on these characteristics. the ESPE(Expert System for Parameter Estimation), an expert system based on the 'facts' and 'rules', is developed using the CLIPS 6.0 and applied to the basin of the An-Yang stream. The results of estimating t도 parameters of water quantity show a high applicability, but those of water quality imply the necessity of improving the present methods due to both the complexity of estimation processes and the lack of decision rules.

  • PDF

A study on Investigation of Fecal Contamination Indicator Bacteria for Management of Source Water Quality (상수원 수질관리를 위한 분변오염 지표세균에 관한 연구)

  • 장현정;이용욱
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.1
    • /
    • pp.19-27
    • /
    • 2003
  • Coliforms is currently being used as the standard of environmental water qualify to evaluate the level of source water quality especially condition of fecal contamination. However, not properly applied to water quality management. So in this study, in addition to Coliforms, fecal contamination indicator bacteria turk at Feral Coliforms(FC), E. coli, Fecal streptococci(FS), Clostridium and environmental parameters related with it's distribution were investigated on a monthly basis in 6 water intakes of Han River. The mean of BOD, DO, SS and pH, benchmarks of source water management were maintained the second grade of environmental water quality standard applied to Han River but Coliforms exceeded it. Distribution of Coliforms ranged from 1.0×10¹ to 2.7 10/sup 5/ CFU/ml, FC ranged from ND to 5.3×10¹ CFU/ml, E. coli ranged from ND to 9.2×10¹ CFU/ml, FS ranged from ND to 2.5×10¹CFU/ml, they were steepy rise on July and August in common when rainfalls was heavy and water temperature was high, but Clostridium perfringens ranged from 1.7×10¹to 1.7×10¹CFU/ml not fluctuate by month. Statistical analysis of sampling data showed that most significant correlations occurred among FC and Coliforms(r = 0.840), E. coli(r = 0.792), FS(r = 0.687) and environmental parameters(temperature, turbidity, SS, rotor were all r > 0.60) while no significant correlation was observed between ammonia generally recognized fecal contamination indicator and bacteria. Identification of the coliforms showed that Enterobacter, Klebsiella, Citrobacter were comprised of 32%, 24%, 16% respectively, and E. coli were 7% of it. while E. coli was made up 85.9% of FC. The mean value of FC/Coliforms ratio, 5.2(0.1-42) were higher in Amsa, Guui than Jayang. Fecal coliforms, as those are able to reflect more particularly the extent of the fecal contamination, were considered useful in deciding the level of water treatment while monitoring the fecal contamination from the source of water supply. Therefore, it is expected that the water quality is going to be managed more efficiently by using fecal coliforms supplementarily to total coliforms which are current standard item of water-quality environment.

IoT-Based Automatic Water Quality Monitoring System with Optimized Neural Network

  • Anusha Bamini A M;Chitra R;Saurabh Agarwal;Hyunsung Kim;Punitha Stephan;Thompson Stephan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.46-63
    • /
    • 2024
  • One of the biggest dangers in the globe is water contamination. Water is a necessity for human survival. In most cities, the digging of borewells is restricted. In some cities, the borewell is allowed for only drinking water. Hence, the scarcity of drinking water is a vital issue for industries and villas. Most of the water sources in and around the cities are also polluted, and it will cause significant health issues. Real-time quality observation is necessary to guarantee a secure supply of drinking water. We offer a model of a low-cost system of monitoring real-time water quality using IoT to address this issue. The potential for supporting the real world has expanded with the introduction of IoT and other sensors. Multiple sensors make up the suggested system, which is utilized to identify the physical and chemical features of the water. Various sensors can measure the parameters such as temperature, pH, and turbidity. The core controller can process the values measured by sensors. An Arduino model is implemented in the core controller. The sensor data is forwarded to the cloud database using a WI-FI setup. The observed data will be transferred and stored in a cloud-based database for further processing. It wasn't easy to analyze the water quality every time. Hence, an Optimized Neural Network-based automation system identifies water quality from remote locations. The performance of the feed-forward neural network classifier is further enhanced with a hybrid GA- PSO algorithm. The optimized neural network outperforms water quality prediction applications and yields 91% accuracy. The accuracy of the developed model is increased by 20% because of optimizing network parameters compared to the traditional feed-forward neural network. Significant improvement in precision and recall is also evidenced in the proposed work.

Characteristics on Seasonal Variation of Stream Water Quality on Upland Headwater Streams in Forested Catchments (산림유역의 계류수질 현황 및 계절적 변동 특성)

  • Nam, Sooyoun;Lim, Honggeun;Li, Qiwen;Choi, Hyung Tae;Yang, Hyunje;Kim, Jaehoon
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.5
    • /
    • pp.220-230
    • /
    • 2022
  • Seasonal variability of water quality in the upland headwater streams in ten forested catchments (37.0~209.0 ha) was examined from April to November 2021. Here, seven physicochemical parameters were analyzed including pH, electrical conductivity (EC), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (T-N), total phosphorous (T-P), and BOD/TOC. The parameters were compared with those of lowerland rivers as middle and lower reaches within a watershed. The pH showed was low (6.4~6.9) during all the seasons, however, BOD and BOD/TOC in the fall season were 2-fold higher than in the spring and summer seasons. Based on environmental standards, the water quality level revealed that the upland headwater streams maintained the purity and cleanliness of water except for pH in the summer season. BOD/TOC of all the seasons and BOD of the fall season in the upland headwater streams were higher than that in the lowerland rivers, whereas the rest of the physicochemical parameters in the upland headwater streams were lower than that in the lowerland rivers. Additionally, the water quality level maintained the purity and cleanliness of water as "Good" in two reaches. The unique aspects of our study design enabled us to draw inferences about water quality characteristics with temporal and spatial analysis in upland headwater streams. This design will be useful for the long-term strategy of effective water quality management for integrated upland headwater streams and lowerland rivers within a watershed.

Discrimination of the drinking water taste by potentiometric electronic tongue and multivariate analysis (전자혀 및 다변량 분석법을 활용한 먹는물의 구별 방법)

  • Eunju Kim;Tae-Mun Hwang;Jae-Wuk Koo;Jaeyong Song;Hongkyeong Park;Sookhyun Nam
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.425-435
    • /
    • 2023
  • Organoleptic parameters such as color, odor, and flavor influence consumer perception of drinking water quality. This study aims to evaluate the taste of the selected bottled and tap water samples using an electronic tongue (E-tongue) instead of a sensory test. Bottled and tap water's mineral components are related to the overall preference for water taste. Contrary to the sensory test, the potentiometric E-tongue method presented in this study distinguishes taste by measuring the mineral components in water, and the data obtained can be statistically analyzed. Eleven bottled water products from various brands and one tap water from I city in Korea were evaluated. The E-tongue data were statistically analyzed using multivariate statistical tools such as hierarchical clustering analysis (HCA), principal component analysis (PCA), and partial least squares discriminant analysis (PLS-DA). The results show that the E-tongue method can clearly distinguish taste discrimination in drinking water differing in water quality based on the ion-related water quality parameters. The water quality parameters that affect taste discrimination were found to be total dissolved solids (TDS), sodium (Na+), calcium (Ca2+), magnesium (Mg2+), sulfate (SO42-), chloride (Cl-), potassium (K+) and pH. The distance calculation of HCA was used to quantify the differences between 12 different types of drinking water. The proposed E-tongue method is a practical tool to quantitatively evaluate the differences between samples in water quality items related to the ionic components. It can be helpful in quality control of drinking water.

Prediction of Total Phosphorus (T-P) in the Nakdong River basin utilizing In-Situ Sensor-Derived water quality parameters (직독식 센서 측정 항목을 활용한 낙동강 유역의 총인(T-P) 예측 연구)

  • Kang, YuMin;Nam, SuHan;Kim, YoungDo
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.7
    • /
    • pp.461-470
    • /
    • 2024
  • This study aimed to predict total phosphorus (T-P) to address early eutrophication caused by nutrient influx from various human activities. Traditional T-P monitoring systems are labor-intensive and time-consuming, leading to a global trend of using direct reading sensors. Therefore, this study utilized water quality parameters obtained from direct reading sensors in a two-stage T-P prediction process. The importance of turbidity (Tur) in T-P prediction was examined, and an analysis was conducted to determine if T-P prediction is possible using only direct reading sensor parameters by adding automatic water quality analyzer parameters. The study found that T-P concentrations were higher in the mid-lower reaches of the Nakdong River basin compared to the upper reaches. Pearson correlation analysis identified water quality parameters highly correlated with T-P at each site, which were then used in multiple linear regression analysis to predict T-P. The analysis was conducted with and without the inclusion of Tur, and the performance of models incorporating automatic water quality analyzer parameters was compared with those using only direct reading sensor parameters. The results confirmed the significance of Tur in T-P prediction, suggesting that it can be used as a foundational element in the development of measures to prevent eutrophication.

Development of River Recreation Index Model by Synthesis of Water Quality Parameters (수질인자의 합성에 의한 하천 레크리에이션 지수 모델의 개발)

  • Seo, Il Won;Choi, Soo Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1395-1408
    • /
    • 2014
  • In this research, a River Recreation Index Model (RRIM) was developed to provide sufficient information on the water quality of rivers to the public in order to secure safety of publics. River Recreation Index (RRI) is an integrated water quality information for recreation activities in rivers and expressed as the point from 0 to 100. The proposed RRIM consisted of two sub models: Fecal Coliform Model (FCM) and Water Quality Index Model (WQIM). FCM predicted Fecal Coliform Grade (FCG) using a logistic regression and WQIM synthesized water quality parameters of, DO, pH, turbidity and chlorophyll a into Water Quality Index (WQI). FCG and WQI were integrated into RRI by the integrating algorithm. The proposed model was applied to upstream of Gangjeong Weir in Nakdong River, and compared with Real Time Water Quality Index (RTWQI) which is the existing water quality information system for recreation use. The results show that calculated RRI reflected change of integrated water quality parameters well. Especially chlorophyll a showed Pearson correlation coefficient -0.85 with RRI. Also, RRIM produced more conservative index than RTWQI because RRI was calculated considering uncertainty of water quality criteria. Further, RRI showed especially low values when fecal coliform was predicted as low grade.