• Title/Summary/Keyword: water phantom

Search Result 372, Processing Time 0.032 seconds

Clinical Implementation of an In vivo Dose Verification System Based on a Transit Dose Calculation Tool for 3D-CRT

  • Jeong, Seonghoon;Yoon, Myonggeun;Chung, Weon Kuu;Chung, Mijoo;Kim, Dong Wook
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1571-1576
    • /
    • 2018
  • We developed and evaluated an algorithm to calculate the target radiation dose in cancer patients by measuring the transmitted dose during 3D conformal radiation treatment (3D-CRT) treatment. The patient target doses were calculated from the transit dose, which was measured using a glass dosimeter positioned 150 cm from the source. The accuracy of the transit dose algorithm was evaluated using a solid water phantom for five patient treatment plans. We performed transit dose-based patient dose verification during the actual treatment of 34 patients who underwent 3D-CRT. These included 17 patients with breast cancer, 11 with pelvic cancer, and 6 with other cancers. In the solid water phantom study, the difference between the transit dosimetry algorithm with the treatment planning system (TPS) and the measurement was $-0.10{\pm}1.93%$. In the clinical study, this difference was $0.94{\pm}4.13%$ for the patients with 17 breast cancers, $-0.11{\pm}3.50%$ for the eight with rectal cancer, $0.51{\pm}5.10%$ for the four with bone cancer, and $0.91{\pm}3.69%$ for the other five. These results suggest that transit-dosimetry-based in-room patient dose verification is a useful application for 3D-CRT. We expect that this technique will be widely applicable for patient safety in the treatment room through improvements in the transit dosimetry algorithm for complicated treatment techniques (including intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT).

Design of a scintillator-based prompt gamma camera for boron-neutron capture therapy: Comparison of SrI2 and GAGG using Monte-Carlo simulation

  • Kim, Minho;Hong, Bong Hwan;Cho, Ilsung;Park, Chawon;Min, Sun-Hong;Hwang, Won Taek;Lee, Wonho;Kim, Kyeong Min
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.626-636
    • /
    • 2021
  • Boron-neutron capture therapy (BNCT) is a cancer treatment method that exploits the high neutron reactivity of boron. Monitoring the prompt gamma rays (PGs) produced during neutron irradiation is essential for ensuring the accuracy and safety of BNCT. We investigate the imaging of PGs produced by the boron-neutron capture reaction through Monte Carlo simulations of a gamma camera with a SrI2 scintillator and parallel-hole collimator. GAGG scintillator is also used for a comparison. The simulations allow the shapes of the energy spectra, which exhibit a peak at 478 keV, to be determined along with the PG images from a boron-water phantom. It is found that increasing the size of the water phantom results in a greater number of image counts and lower contrast. Additionally, a higher septal penetration ratio results in poorer image quality, and a SrI2 scintillator results in higher image contrast. Thus, we can simulate the BNCT process and obtain an energy spectrum with a reasonable shape, as well as suitable PG images. Both GAGG and SrI2 crystals are suitable for PG imaging during BNCT. However, for higher imaging quality, SrI2 and a collimator with a lower septal penetration ratio should be utilized.

Characterization of Rhizophora SPP. particleboards with SOY protein isolate modified with NaOH/IA-PAE adhesive for use as phantom material at photon energies of 16.59-25.26 keV

  • Samson, Damilola Oluwafemi;Shukri, Ahmad;Mat Jafri, Mohd Zubir;Hashim, Rokiah;Sulaiman, Othman;Aziz, Mohd Zahri Abdul;Yusof, Mohd Fahmi Mohd
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.216-233
    • /
    • 2021
  • In this work, Rhizophora spp. particleboard phantoms were made using SPI-based adhesives, modified with sodium hydroxide and itaconic acid polyamidoamine-epichlorohydrin (0, 5, 10, and 15 wt%). An X-ray computed tomography (CT) imaging system was used to ascertain the CT numbers and density distribution profiles of the particleboards. The SPI-based/NaOH/IA-PAE/Rhizophora spp. particleboard phantoms with 15 wt% IA-PAE addition level had the highest solid content, flexural strength, flexural modulus, and internal bonding strength of 36.06 ± 1.08%, 18.61 ± 0.38 Nmm-2, 7605.76 ± 0.89 Nmm-2, and 0.463 ± 0.053 Nmm-2, respectively. The moisture content, mass density, water absorption, and dimensional stability were 6.93 ± 0.27%, 0.962 ± 0.037 gcm-3, 22.36 ± 2.47%, and 10.90 ± 0.86%, respectively. The results revealed that the mass attenuation coefficients and effective atomic number values within the 16.59-25.26 keV photon energy region, were close to the calculated XCOM values in water, with a p-value of 0.077. Moreover, the CT images showed that the dissimilarities in the discrepancy of the profile density decreased as the IA-PAE concentrations increased. Therefore, these results support the appropriateness of the SPI-based/NaOH/IA-PAE/Rhizophora spp. particleboard with 15 wt% IA-PAE adhesive as a suitable tissue-equivalent phantom material for medical health applications.

Monte Carlo Investigation of Dose Enhancement due to Gold Nanoparticle in Carbon-12, Helium-4, and Proton Beam Therapy

  • Sang Hee Ahn
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.114-120
    • /
    • 2022
  • Purpose: Particle beam therapy is advantageous over photon therapy. However, adequately delivering therapeutic doses to tumors near critical organs is difficult. Nanoparticle-aided radiation therapy can be used to alleviate this problem, wherein nanoparticles can passively accumulate at higher concentrations in the tumor tissue compared to the surrounding normal tissue. In this study, we investigate the dose enhancement effect due to gold nanoparticle (GNP) when Carbon-12, He-4, and proton beams are irradiated on GNP. Methods: First, monoenergetic Carbon-12 and He-4 ion beams of energy of 283.33 MeV/u and 150 MeV/u, respectively, and a proton beam of energy of 150 MeV were irradiated on a water phantom of dimensions 30 cm×30 cm×30 cm. Subsequently, the secondary-particle information generated near the Bragg peak was recorded in a phase-space (phsp) file. Second, the obtained phsp file was scaled down to a nanometer scale to irradiate GNP of diameter 50 nm located at the center of a 4 ㎛×4 ㎛×4 ㎛ water phantom. The dose enhancement ratio (DER) was calculated in intervals of 1 nm from the GNP surface. Results: The DER of GNP computed at 1 nm from the GNP surface was 4.70, 4.86, and 4.89 for Carbon-12, He-4, and proton beams, respectively; the DER decreased rapidly with increasing distance from the GNP surface. Conclusions: The results indicated that GNP can be used as radiosensitizers in particle beam therapy. Furthermore, the dose enhancement effect of the GNP absorbed by tumor cells can aid in delivering higher therapeutic doses.

Observation Systems of Cherenkov Radiation from Water Phantom Irradiated with Co-60 Gamma-rays

  • Tabushi, Katsuyoshi;Koyama, Shuji;Homma, Mitsuhiko;Tamiya, Tadashi;Yajima, Mihoko;Imai, Kuniharu;Obata, Yasunori
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.123-125
    • /
    • 2002
  • Blue light of Cherenkov radiation generated by electrons in transparent substances such as water and acrylic resin is well known generally. If students can easily observe the blue light at school, they may be impressed by the fascinating radiation. Four years ago, management of the Co-60 unit for radiotherapy was transferred to Nagoya University School of Health Sciences from a related hospital. We have examined whether or not the Cherenkov radiation in water from secondary electrons generated by Co-60 gamma-rays can be safely observed by eyes and photographs. First, the Cherenkov radiation in the water tank was led to the corridor outside the irradiation room by a mirror, and observed directly without any effect of the radiation exposure. Second, photographs of the Cherenkov radiation were taken under the conditions consisted of several irradiation fields and pass lengths of gamma-rays in water.

  • PDF

The Investigation Regarding the Dose Change due to the Heterogeneity of Prostate Cancer Treatment with IMRT (전립선암의 세기조절 방사선치료 시 불균질부에 의한 선량변화에 관한 고찰)

  • Yoon, Il-Kyu;Park, Jang-Pil;Lee, Jae-Hee;Park, Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.107-112
    • /
    • 2007
  • Purpose: The pelvic phantom was fabricated in the following purposes: (1) Dose verification of IMRT plan using Eclipse planning computer, (2) to study the interface effect at the interface between rectal wall and air. The TLD can be inserted in the pelvic phantom to confirm the dose distribution as well as uncertainty at the interface. Materials and Methods: A pelvic phantom with the dimension of 30 cm diameter, 20 cm height and 20 cm thickness was fabricated to investigate the dose at the rectal wall. The phantom was filled with water and has many features like bladder, rectum, and prostate and seminal vesicle (SV). The rectum is made of 3 cm-dimater plastic pipe, and it cab be blocked by using a plug, and film can be inserted around the rectal wall. The phantom was scanned with Philips Brillance scanner and various organs such as prostate, SV, and rectal wall, and bladder wall were delineated. The treatment parameters used in this study are the same as those used in the protocols in the SNUH. TLD chips are inserted to the phantom to evaluate the dose distribution to the rectal wall (to simulate high dose gradient region), bladder wall and SV (to simulate the high dose region) and 2 spots in anterior surface (to simulate the low dose region). The TLD readings are compared with those of the planning computer (ECLIPSE, Varian, USA). Results: The target TLD doses represented as the prostate and SV show excellent agreements with the doses from the RTP within +/-3%. The rectal wall doses measured at the rectal wall are different from the those of the RTP by -11%. This is in literatures called as an interface effect. The underdosages at the rectal wall is independent of 3 heterogeneity correction algorithm in the Eclipse RTP. Also the low dose regions s represented as surface in this study were within +/-1%. Conclusion: The RTP estimate the dosage very accurately withihn +/-3% in the high dose (SV, or prostate) and low dose region (surface). However, the dosage at the rectal wall differed by as much as 11% (In literatures, the underdosage of 9$\sim$15% were reported). This range of errors occurs at the interface, for example, at the interface between lung and chest wall, or vocal cord. This interface effect is very important in clinical situations, for example, to estimate the NTCP (normal tissue complication probability) and to estimate the limitations of the current RTP system. Monte-carlo-based RTP will handle this issue correctly.

  • PDF

Quantitative Comparisons in $^{18}F$-FDG PET Images: PET/MR VS PET/CT ($^{18}F$-FDG PET 영상의 정량적 비교: PET/MR VS PET/CT)

  • Lee, Moo Seok;Im, Young Hyun;Kim, Jae Hwan;Choe, Gyu O
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.68-80
    • /
    • 2012
  • Purpose : More recently, combined PET/MR scanners have been developed in which the MR data can be used for both anatometabolic image formation and attenuation correction of the PET data. For quantitative PET information, correction of tissue photon attenuation is mandatory. The attenuation map is obtained from the CT scan in the PET/CT. In the case of PET/MR, the attenuation map can be calculated from the MR image. The purpose of this study was to assess the quantitative differences between MR-based and CT-based attenuation corrected PET images. Materials and Methods : Using the uniform cylinder phantom of distilled water which has 199.8 MBq of $^{18}F$-FDG put into the phantom, we studied the effect of MR-based and CT-based attenuation corrected PET images, of the PET-CT using time of flight (TOF) and non-TOF iterative reconstruction. The images were acquired from 60 minutes at 15-minute intervals. Region of interests were drawn over 70% from the center of the image, and the Scanners' analysis software tools calculated both maximum and mean SUV. These data were analyzed by one way-anova test and Bland-Altman analysis. MR images are segmented into three classes(not including bone), and each class is assigned to each region based on the expected average attenuation of each region. For clinical diagnostic purpose, PET/MR and PET/CT images were acquired in 23 patients (Ingenuity TF PET/MR, Gemini TF64). PET/CT scans were performed approximately 33.8 minutes after the beginnig of the PET/MR scans. Region of interests were drawn over 9 regions of interest(lung, liver, spleen, bone), and the Scanners' analysis software tools calculated both maximum and mean SUV. The SUVs from 9 regions of interest in MR-based PET images and in CT-based PET images were compared. These data were analyzed by paired t test and Bland-Altman analysis. Results : In phantom study, MR-based attenuation corrected PET images generally showed slightly lower -0.36~-0.15 SUVs than CT-based attenuation corrected PET images (p<0.05). In clinical study, MR-based attenuation corrected PET images generally showed slightly lower SUVs than CT-based attenuation corrected PET images (excepting left middle lung and transverse Lumbar) (p<0.05). And percent differences were -8.01.79% lower for the PET/MR images than for the PET/CT images. (excepting lung) Based on the Bland-Altman method, the agreement between the two methods was considered good. Conclusion : PET/MR confirms generally lower SUVs than PET/CT. But, there were no difference in the clinical interpretations made by the quantitative comparisons with both type of attenuation map.

  • PDF

Radiotherapic Valuation of Paraffin Wax for Patients with Oral Cancer (구강암 환자 치료시 치과용 기초상 왁스(Paraffin Wax)의 유용성 평가)

  • Na, Kyoung-Su;Seo, Seuk-Jin;Lee, Je-Hee;Yoo, Sook-Heun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.1
    • /
    • pp.41-49
    • /
    • 2011
  • Purpose: This study is designed to investigate radiotherapic valuation of Paraffin Wax, which is newly formed for this study and generally utilized in dentistry, and Mouth Piece and Putty impression, which are commonly used in radiotherapy, for oral cavity as a compensator. Materials and Methods: Each compensator was formed by $10{\times}10{\times}1cm$ and measured radiation dose attenuation ratio with reference of water phantom which is made of tissue-equivalent materials. Two patients with oral cancer underwent DRR (Digitally Reconstructed Radiogrph) of Offline Review Program of Aria System and Portal vision for 5 times for each material to evaluate reproducibility by each filling materials. Moreover, MU (monitor unit) changes by dose absorption were considered in the case of inevitable implication of an filling materials in the range for radiotherapy. Results: Radiation dose attenuation ratios were shown -0.7~+3.7% for Mouth Piece, +0.21~+0.39% for Paraffin Wax and -2.71~-1.76% for Putty impression. Error ranges of reproducibility of positions were measured ${\pm}3mm$ for Mouth Piece, ${\pm}2mm$ for Paraffin Wax and ${\pm}2mm$ mm for Putty impression. Difference of prescription MU from dose absorption with an filling material increased +7.8% (250 MU) in Putty impression and -0.9% (230 MU) in Paraffin Wax as converted into a percentage from the standard phantom, Water 232 MU. Conclusion: Dose reduction of boundary between cavity and tissue was observed for Mouth Piece. Mouth Piece also had low reproducibility of positions as it had no reflection of anatomy of oral cavity even though it was a proper material to separate Maxilla and Mandible during therapy. On the other hand, Putty impression was a suitable material to correctly re-position oral cavity as before. However, it risked normal tissues getting unnecessary over irradiation and it caused radiation dose decrease by -2.5% for 1cm volume in comparison of it of water phantom. Dose reduction in Paraffin Wax, Fat Tissue-Equivalent Material, was smaller than other impressions and position reproducibility of it was remarkable as it was possible to make an anatomy reflected impression. It was also well fitted to oral cavity to transfer radiation dose planned in radiotherapy. Thus, Paraffin Wax will be an ideal material in radiotherapy for patients with oral cancer.

  • PDF

Characteristic Evaluation of Optically Stimulated Luminescent Dosimeter (OSLD) for Dosimetry (광유도발광선량계(Optically Stimulated Luminescent Dosimeter)의 선량 특성에 관한 고찰)

  • Kim, Jeong-Mi;Jeon, Su-Dong;Back, Geum-Mun;Jo, Young-Pil;Yun, Hwa-Ryong;Kwon, Kyung-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.123-129
    • /
    • 2010
  • Purpose: The purpose of this study was to evaluate dosimetric characteristics of Optically stimulated luminescent dosimeters (OSLD) for dosimetry Materials and Methods: InLight/OSL $NanoDot^{TM}$ dosimeters was used including $Inlight^{TM}MicroStar$ Reader, Solid Water Phantom, and Linear accelerator ($TRYLOGY^{(R)}$) OSLDs were placed at a Dmax in a solid water phantom and were irradiated with 100 cGy of 6 MV X-rays. Most irradiations were carried out using an SSD set up 100 cm, $10{\times}10\;cm^2$ field and 300 MU/min. The time dependence were measured at 10 minute intervals. The dose dependence were measured from 50 cGy to 600 cGy. The energy dependence was measured for nominal photon beam energies of 6, 15 MV and electron beam energies of 4-20 MeV. The dose rate dependence were also measured for dose rates of 100-1,000 MU/min. Finally, the PDD was measured by OSLDs and Ion-chamber. Results: The reproducibility of OSLD according to the Time flow was evaluated within ${\pm}2.5%$. The result of Linearity of OSLD, the dose was increased linearly up to about the 300 cGy and increased supralinearly above the 300 cGy. Energy and dose rate dependence of the response of OSL detectors were evaluated within ${\pm}2%$ and ${\pm}3%$. $PDD_{10}$ and PDD20 which were measured by OSLD was 66.7%, 38.4% and $PDD_{10}$ and $PDD_{20}$ which were measured by Ion-chamber was 66.6%, 38.3% Conclusion: As a result of analyzing characteration of OSLD, OSLD was evaluated within ${\pm}3%$ according to the change of the time, enregy and dose rate. The $PDD_{10}$ and $PDD_{20}$ are measured by OSLD and ion-chamber were evaluated within 0.3%. The OSL response is linear with a dose in the range 50~300 cGy. It was possible to repeat measurement many times and progress of the measurement of reading is easy. So the stability of the system and linear dose response relationship make it a good for dosimetry.

  • PDF

Comparing the dosimetric impact of fiducial marker according to density override method : Planning study (양성자 치료계획에서 fiducial marker의 density override 방법에 따른 선량변화 비교 : Planning study)

  • Sung, Doo Young;Park, Seyjoon;Park, Ji Hyun;Park, Yong Chul;Park, Hee Chul;Choi, Byoung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2017
  • Purpose: The application of density override is very important to minimize dose calculation errors by fiducial markers of metal material in proton treatment plan. However, density override with actual material of the fiducial marker could make problem such as inaccurate target contouring and compensator fabrication. Therefore, we perform density override with surrounding material instead of actual material and we intend to evaluate the usefulness of density override with surrounding material of the fiducial marker by analyzing the dose distribution according to the position, material of the fiducial marker and number of beams. Materials and Method: We supposed that the fiducial marker of gold, steel, titanium is located in 1.5, 2.5, 4.0, 6.0 cm from the proton beam's end of range using water phantom. Treatment plans were created by applying density override with the surrounding material and actual material of the fiducial marker. Also, a liver cancer patient who received proton therapy was selected. We located the fiducial marker of gold, steel, titanium in 0, 1.5, 3.5 cm from the proton beam's end of range and the treatment plans were created by same method with water phantom. Homogeneity Index(HI), Conformity Index(CI) and maximum dose of Organ At Risk(OAR) in Planning Target Volume(PTV) as the evaluation index were compared according to the material, position of the fiducial marker and number of beam. Results: The HI value was more decreased when density override with surrounding material of the fiducial marker was performed comparing with density override with actual material. Especially the HI value was increased when the fiducial marker was located farther from the proton beam's end of the range for a single beam and the fiducial marker's position was closer to isocenter for two or more beams. The CI value was close to 1 and OAR maximum dose was greatly reduced when density override with surrounding material of the fiducial marker was performed comparing with density override with actual material. Conclusion: Density override with surrounding material can be expected to achieve more precise proton therapy than density override with actual material of the fiducial marker and could increase the dose uniformity and target coverage and reduce the dose to surrounding normal tissues for the small fiducial markers used in clinical practice. Most of all, it is desirable to plan the treatment by avoiding the fiducial marker of metal material as much as possible. However, if the fiducial marker have on the beam path, density override of the surrounding material can be expected to achieve more precise proton therapy.

  • PDF