• Title/Summary/Keyword: water oxidation

Search Result 1,773, Processing Time 0.03 seconds

SBA-15 Supported Fe, Ni, Fe-Ni Bimetallic Catalysts for Wet Oxidation of Bisphenol-A

  • Mayani, Suranjana V.;Mayani, Vishal J.;Kim, Sang Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3535-3541
    • /
    • 2014
  • Bisphenol A is considered as pollutant, because it is toxic and hazardous to living organisms even at very low concentrations. Biological oxidation used for removing this organic from waste water is not suitable and consequently application of catalytic wet oxidation has been considered as one of the best options for treating bisphenol A. We have developed Fe/SBA-15, Ni/SBA-15 and Fe-Ni/SBA-15 as heterogeneous catalysts using the advanced impregnation method for oxidation of bisphenol A in water. The catalysts were characterized with physico-chemical characterization methods such as, powder X-ray diffraction (PXRD), FT-IR measurements, N2 adsorption-desorption isotherm, thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis. This work illustrates activity of the catalysts for heterogeneous catalytic degradation reaction revealed with excellent conversion and recyclability. The degradation products identified were not persistent pollutants. GC-MS analysis identified the products: 2,4-hexadienedioic acid, 2,4-pentadienic acid and isopropanol or acetic acid. The leachability study indicated that the catalysts release very little metals to water. Therefore, the possibility of water contamination through metal leaching was almost negligible.

Decomposition of PVC and Ion exchange resin in supercritical water

  • Lee, Sang-Hwan;Yasuyo, Hosgujawa;Kim, Jung-Sung;Park, Yoon-Yul;Hiroshi, Tomiyasu
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2005.05a
    • /
    • pp.267-271
    • /
    • 2005
  • This experiment was carried out at 450"C, which is relatively lower than the temperature for supercritical water oxidation (600-650$^{\circ}C$). In this experiment, the decomposition rates of various incombustible organic substances were very high. In addition, it was confirmed that hetero atoms existed in organic compounds and chlorine was neutralized by sodium(salt formation).However, to raise the decomposition rate, relatively large amount of sodium nitrate(3-4 times the equivalent weight) was required. When complete oxidation is intended as in the case with PCB, the amount of oxidizer and decomposition cost is important. But when vaporization reduction is required as in the case with nuclear wastes, the amount of radioactive wastes increases instead. But as can be seen in the result of XRD measurement, unreacted sodium nitrate remained unchanged. If oxidation reaction of organic substance simply depends on collision frequency, unreacted sodium nitrate can be recovered and reused, then oxidation equivalent weight would be sufficient. In the gas generated, toxic gas was not found. As the supercritical water medium has high reactivity, it is difficult to generate relatively low energy level SO$_{X}$, and NO$_{X}$.

  • PDF

The Effects of Surface Oxidation Occurring during Delivery from an Annealing Furnace to a Water Bath on the Microstructure and Tensile Properties of TWIP Steel (소둔로에서 수욕으로 이송 중 발생한 표면 산화가 TWIP 강의 미세조직과 인장 성질에 미치는 영향)

  • Oh, Seon-Keun;Lee, Young-Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.2
    • /
    • pp.57-64
    • /
    • 2020
  • In the present study, we investigated whether the surface oxidation of C-bearing TWIP steel ℃curs in the air during specimen delivery from an annealing furnace to a water bath and how the microstructure and tensile properties are influenced by surface oxidation. A cold-rolled Fe-18Mn-0.6 (wt%) steel was exposed in the air for 5 s after annealing at various temperatures (750℃, 850℃ and 1000℃) for 10 min in a vacuum, and then water-quenched. For comparison, another specimen, which had been quartz-sealed in a vacuum, was annealed at 1000℃ for 10 min and immediately water-quenched without exposure to air. The 750℃ and 850℃-annealed specimens and the quartz-sealed specimen showed a γ-austenite single phase in the entire specimen due to negligible surface oxidation. However, the 1000℃-annealed specimen exhibited a dual-phase microstructure consisting of ε-martensite and γ-austenite at the sub-surface due to decarburization. Whereas the specimens without decarburization revealed high elongations of 70-80%, the decarburized specimen exhibited a low elongation of ~40%, indicating premature failure due to cracking inside the decarburized layer with ε-martensite and γ-austenite.

Effect of Organic Acids on Cr(III) Oxidation by Mn-oxide

  • Chung, Jong-Bae
    • Applied Biological Chemistry
    • /
    • v.41 no.4
    • /
    • pp.241-245
    • /
    • 1998
  • Two oxidation states of chromium commonly occur in natural soil/water systems, Cr(III) and Cr(VI). The oxidized form, Cr(VI), exists as the chromate ion and is more mobile and toxic than Cr(III). Therefore oxidation of Cr(III) by various Mn-oxides in natural systems is a very important environmental concern. Organic substances can inhibit the Cr(III) oxidation by binding, Cr(III) strongly and also by dissolving Mn-oxides. Most of Cr(III) oxidation studies were carried out using in vitro systems without organic substances which exist in natural soil/water systems. In this study effect of organic acids - oxalate and pyruvate - on Cr(III) oxidation by $birnessite({\delta}-MnO_2)$ was examined. The two organic acids significantly inhibited Cr(III) oxidation by birnessite. Oxalate showed more significant inhibition than pyruvate. As solution pH was lowered in the range of 3.0 to 5.0, the Cr(III) oxidation was more strongly depressed. Addition of more organic acids reduced the Cr(III) oxidation mare extensively. Different inhibition effects by the organic acids could be due to their ability of reductive dissolution of Mn-oxides and/or Cr(III) binding. Organic acids dissolved Mn-oxide during the Cr(III) oxidation by the oxide, Dissolution by oxalic acid was much greater than that by pyruvate, and the dissolution was more extensive at lower pH. Inhibition of Cr(III) oxidation was parallel to the dissolution of Mn-oxide by organic acids. Although the effect of Cr(III) binding by organic acids on Cr(III) oxidation is not known yet, Mn-oxide dissolution by organic acids could be a main reason for the inhibition of Cr(III) oxidation by Mn-oxide in presence of organic acids. Thus oxidation of Cr(III) to Cr(VI) by various Mn-oxides in natural systems could be much less than the oxidation estimated by in vitro studies with only Cr(III) and Mn-oxides.

  • PDF

A Study of Advanced Oxidation Process for Reuse of Industrial Wastewater (산업폐수 재이용을 위한 고급산화공정 시스템 연구)

  • Kim, Sung-Joon;Jin, Ming-Ji;Won, Chan-Hee;Hwang, Jeong-Seok;Lee, Gil-Yong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.580-584
    • /
    • 2010
  • As water becomes more scarce around the world the reuse of treated wastewater is being recenlty considered as indispensible trend we need to follow. Especially, industrial area consuming large amount of water has been encouraged to reuse the treated wastewater to secure sufficient water for the production of merchandise. In this study, a study of advanced oxidation process for treatment of industrial wastewater. The treatment performance of UV and ozoznation and five types advanced oxidation processes such as UV/AC, UV/Catalyst, $O_3$/Catalyst, UV/$O_3$/Catalyst was experimentally investigated for reuse of industrial wastewater. The removal efficiency of $COD_{Cr}$, color were relatively evaluated in each treatment unit simulated outflow water of wastewater treatment area. UV/$O_3$/Catalyst process showed the highest $COD_{Cr}$ remaval and color remaval among proposed oxidation process.

Preliminary Experiment of Gravel Contact Oxidation Process in the Tropics

  • Abdullah Keizrul bin;Omachi Toshikatsu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.12-17
    • /
    • 2006
  • Natural rivers have water purification functions called Gravel Contact Oxidation Process, which decontaminate river water by biological absorption, oxidation and degradation on riverbed gravels. This function has been developed and applied to many small/medium-sized urban rivers in Japan as one of the direct river water purification methods. However the method hasn't been verified in the tropics, which have different climate conditions and river characteristics. A preliminary experiment carried out at a polluted urban tributary in the outskirts of Kuala Lumpur, Malaysia where an increasing attention has been paid to river environment, showed a good applicability to the tropical conditions as a technically practical water purification measure with some maintenance cares for sludge management.

  • PDF

Comparison of Dye Removal Performance of Direct and Indirect Oxidation Electrode (직접 산화와 간접 산화용 전극의 Dye 제거 성능 비교)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.963-968
    • /
    • 2010
  • This study has carried out to evaluate the performance of direct and indirect oxidation electrode for the purpose of decolorization of Rhodamine B (RhB) in water. Four kinds of electrodes were used for comparison: Pt and JP202 (indirect oxidation electrode), Pb and boron doping diamond (BDD, direct oxidation electrode). The effect of applied current (0.5 ~ 2.5 A), electrolyte type (NaCl, KCl, HCl, $Na_2SO_4$ and $H_2SO_4$) and electrolyte concentration (0.5 ~ 2.5 g/L), solution pH (3 ~ 11) and initial RhB concentration (25 ~ 125 mg/L) were evaluated. Experimental results showed that RhB removal efficiency were increased with increase of current, NaCl dosage and decrease of the pH. However, the effect of operating parameter on the RhB removal were different with the electrode type. JP202 electrode was the best electrode from the point of view of performance and energy consumption. The order of removed RhB concentration per energy lie in: JP202>Pt>Pb>BDD.

A STUDY ON OXIDATION TREATMENT OF URANIUM METAL CHIP UNDER CONTROLLING ATMOSPHERE FOR SAFE STORAGE

  • Kim, Chang-Kyu;Ji, Chul-Goo;Bae, Sang-Oh;Woo, Yoon-Myeoung;Kim, Jong-Goo;Ha, Yeong-Keong
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.391-398
    • /
    • 2011
  • The U metal chips generated in developing nuclear fuel and a gamma radioisotope shield have been stored under immersion of water in KAERI. When the water of the storing vessels vaporizes or drains due to unexpected leaking, the U metal chips are able to open to air. A new oxidation treatment process was raised for a long time safe storage with concepts of drying under vacuum, evaporating the containing water and organic material with elevating temperature, and oxidizing the uranium metal chips at an appropriate high temperature under conditions of controlling the feeding rate of oxygen gas. In order to optimize the oxidation process the uranium metal chips were completely dried at higher temperature than $300^{\circ}C$ and tested for oxidation at various temperatures, which are $300^{\circ}C$, $400^{\circ}C$, and $500^{\circ}C$. When the oxidation temperature was $400^{\circ}C$, the oxidized sample for 7 hours showed a temperature rise of $60^{\circ}C$ in the self-ignition test. But the oxidized sample for 14 hours revealed a slight temperature rise of $7^{\circ}C$ representing a stable behavior in the self-ignition test. When the temperature was $500^{\circ}C$, the shorter oxidation for 7 hours appeared to be enough because the self-ignition test represented no temperature rise. By using several chemical analyses such as carbon content determination, X-ray deflection (XRD), Infrared spectra (IR) and Thermal gravimetric analysis (TGA) on the oxidation treated samples, the results of self-ignition test of new oxidation treatment process for U metal chip were interpreted and supported.

Astudy on Treatment of Livestock Wastewater using Coagulation and Fenton Oxidation Process (응집 및 fenton 산화공정을 연계한 축산폐수처리에 관한 연구)

  • Cho, Chang-Woo;Ryou, Jae-Woong;Chung, Paul-Gene
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.610-614
    • /
    • 2004
  • The objective of this study was to remove organics and color in livestock wastewater using coagulation and Fenton oxidation process. After coagulation process as $1^{st}$ treatment, organics in $1^{st}$ treatment water were removed by using OH radical produced in Fenton oxidation process. Removal efficiencies of $COD_{Mn}$ and color were 87.2% and 95.7% separately. At that time, the ratio of $Fe^{2+}/H_2O_2$ was 0.8~1.0, and range of reaction pH was effective at the pH of 3.5~3.8. The Reaction time of 120min more than 60min or 90min was sufficient in Fenton process. Removal efficiency of organics was higher two- or multi-stage treatment than one-stage treatment.

Petroleum Refinery Effluents Treatment by Advanced Oxidation Process with Methanol

  • Shoucheng, Wen
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.1
    • /
    • pp.76-79
    • /
    • 2014
  • Petroleum refinery effluents are waste originating from industries primarily engaged in refining crude oil. It is a very complex compound of various oily wastes, water, heavy metals and so on. Conventional processes are unable to effectively remove the chemical oxygen demand (COD) of petroleum refinery effluents. Supercritical water oxidation (SCWO) was proposed to treat petroleum refinery effluents. In this paper, methanol was used to investigate co-oxidative effect of methanol on petroleum refinery effluents treatment. The results indicated that supercritical water oxidation is an effective process for petroleum refinery effluents treatment. Adding methanol caused an increase in COD removal. When reaction temperature is $440^{\circ}C$, residence time is 20 min, OE is 0.5 and initial COD is 40000 mg/L, and COD removal increases 8.5%.