• Title/Summary/Keyword: water inflow

Search Result 1,477, Processing Time 0.026 seconds

A Study on Quality Improvement for the Prevention of Water Infiltration and Corrosion of Helicopter MRA Control-Rod (회전익 항공기 MRA 조종로드 방수 및 부식 방지에 관한 연구)

  • Lim, Hyun-Gyu;Choi, Jae-hyung;Kim, Dae-Han;Jang, Min-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.92-100
    • /
    • 2017
  • The Helicopter MRA Control Rod System has the important function of controlling the speed, height, and direction of helicoptersby adjusting the main rotor disc. However, the ingress of water into the inner control rod can cause ice damage in the rod during winter operation and also corrosion;these defects need to be rectified. The water flowed into the control rod through the upper side space, and the rod was cracked during icing expansion occurring at low temperature. The corrosion occurred due to the lack of coating process during the manufacturing process. To resolve these problems, the upper rod was sealed to prevent water inflow and a coating process was added to prevent corrosion. These solutions were verified by awaterproof test and a salt fog test. The phenomena, causes and measures were reviewed and the methods of improvement were established and proven. This proposed technology to prevent water infiltration and corrosion will contribute to the safety of rotary wing aircraft.

An analysis of interception capability of storm water grate inlet in road (도로 빗물받이의 차집능력 분석)

  • Lee, Jong-Tae;Yoon, Sei-Eui;Kim, Kap-Soo;Kim, Young-Ran;Ryu, Taek-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.465-480
    • /
    • 2003
  • The interception capabilities of storm water grate inlet were analyzed in this paper. The hydraulic model lot gutter flow was used to estimate the interception capability. With the consideration of width and length of road, gutter discharges were ranged of 4-15l/sec. The transverse slopes of gutter were selected 4, 7 and 10%. The longitudinal slopes were 0, 2, 5 and 7%. The four sizes of storm water grate inlet were used in this experiments ($30\times40cm,\;40\times50cm,\;40\times100cm,\;40\times150cm$). The total number of experimental cases were 240. As the transverse slopes of gutter increased, the interception capability also increased. As the flow width in gutter and the discharge were lower, the interception efficiencies increased and the longitudinal slopes of road increased, the interception efficiencies decreased. The empirical formula with the factors of total inflow discharge, the longitudinal slope and the transverse slope of gutter were derived. These equations could be used to estimate the intercepting discharge of grate inlet. The reasonable construction space of grate inlet for the road widths, the longitudinal slopes, the transverse slopes and the grate inlet sizes were suggested.

Evaluation of Effects on SWAT Simulated Hydrology and Sediment Behaviors of SWAT Watershed Delineation using SWAT ArcView GIS Extension Patch (SWAT ArcView GIS Extension Patch를 이용한 소유역 분할에 따른 수문 및 유사 거동에 미치는 영향 평가)

  • Heo, Sunggu;Kim, Namwon;Park, Younshik;Kim, Jonggun;Kim, Seong-joon;Ahn, Jaehun;Kim, Ki-sung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.147-155
    • /
    • 2008
  • Because of increased nonpoint source runoff potential at highland agricultural fields of Kangwon province, effective agricultural management practices are required to reduce the inflow of sediment and other nonpoint source pollutants into the water bodies. The watershed-scale model, Soil and Water Assessment Tool (SWAT), model has been used worldwide for developing effective watershed management. However, the SWAT model simulated sediment values are significantly affected by the number of subwatershed delineated. This result indicates that the SWAT estimated watershed characteristics from the watershed delineation process affects the soil erosion and sediment behaviors. However, most SWAT users do not spend time and efforts to analyze variations in sediment estimation due to watershed delineation with various threshold value although topography falsification affecting soil erosion process can be caused with watershed delineation processes. The SWAT model estimates the field slope length of Hydrologic Response Unit (HRU) based on average slope of subwatershed within the watershed. Thus the SWAT ArcView GIS Patch, developed by using the regression relationship between average watershed slope and field slope length, was utilized in this study to compare the simulated sediment from various watershed delineation scenarios. Four watershed delineation scenarios were made with various threshold values (700 ha, 300 ha, 100 ha, and 75 ha) and the SWAT estimated flow and sediment values were compared with and without applying the SWAT ArcView GIS Patch. With the SWAT ArcView GIS Patch applied, the simulated flow values are almost same irrespective of the number of subwatershed delineated while the simulated flow values changes to some extent without the SWAT ArcView GIS Patch applied. However when the SWAT ArcView GIS Patch applied, the simulated sediment values vary 9.7% to 29.8% with four watershed delineation scenarios, while the simulated sediment values vary 0.5% to 126.6% without SWAT ArcView GIS applied. As shown, the SWAT estimated flow and sediment values are not affected by the number of watershed delineation significant compared with the estimated flow and sediment value without applying the SWAT ArcView GIS Patch.

Seasonal Characteristics of Temperature and Salinity Variations Around the Tongyeong and Geoje Coastal Waters by a Cluster Analysis (군집분석을 이용한 통영·거제 연안역의 수온·염분 계절 변동 특성)

  • Kim, Byeong Kuk;Lee, Chang Rae;Lee, Moon Ock;Kim, Jong Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.3
    • /
    • pp.173-184
    • /
    • 2016
  • This study was carried out to understand the characteristic distributions of water temperature and salinity in accordance with seasons atound the Tongyeong and Geoje, based on a cluster analysis. Water temperatures in coastal areas were $1-2^{\circ}C$ higher than those in open seas when in the spring, autumn and winter. In particular, a south-northward isothermal line was established at the bottom layer in the winter of 2014, unlikely to the surface layer. In addition, a south-northward isohaline was also established at the bottom layer in the winter of 2013. Therefore, we recognized that a moving pattern of water masses has also a difference since forming directions of those lines were not equivalent with each other between the surface and bottom layers. In contrast, stratification appeared in the summer with a roughly difference of water temperature of $10^{\circ}C$ and a salinity of 2-10 psu between the layers. A cluster analysis indicated that the southeastern coastal waters have three distinct water masses, even though some complicated situations exist due to the seawater inflow from the outside. However, the result of a cluster analysis turned out quite reasonable because the result of a regression analysis proved that it is appropriate, just except for the timing of a south-northward front formation.

Development Mechanism of Circulation Current and Oceanographic Characteristics in Yeongil Bay (영일만 순환류 발생구조와 해황 특성)

  • Yoon, Han-Sam;Lee, In-Cheol
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.3
    • /
    • pp.140-147
    • /
    • 2005
  • We investigated the interactions between coastal waters of the Yeongil Bay, Korea, and oceanic waters of the Eastern Sea, as wet 1 as the development mechanism of vertical circulation currents in the bay. The oceanic waters of the bay have an average water temperature of $12.2{\sim}18.4^{\circ}C$ and salinity of $33.32{\sim}34.43$ PSU. Results of spectral analysis have shown that the period of revolution between oceanic and coastal waters is about 0.84-0.91 years in the surface waters and 1.84 years in the bottom layer. The wind direction in the bay shifts between SW and NE, with the main wind direction being SW during the winter period, and water mass movement is influenced by such seasonal variations in wind direction. Vertical circulation currents in the bay are structured by two phenomena: the surface riverine outflow layer from the Hyeong-san River into the open sea and the bottom oceanic inflow layer with high-temperature and salinity into the bay. These phenomena start the spring when the water mass is stable and become stronger in the summer when the surface cold water develops over a 10-day period. Consequently, tidal currents have little influence in the bay; rather, these vertical and horizontal circulation currents play an important role in the transport of the pollutant load from the inner bay to the open sea.

  • PDF

A Study on Time Series Analysis of Membrane Fouling by using Genetic Algorithm in the Field Plant (유전자알고리즘을 이용한 막오염 시계열 예측 연구)

  • Lee, Jin Sook;Kim, Jun Hyun;Jun, Yong Seong;Kwak, Young Ju;Lee, Jin Hyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.444-451
    • /
    • 2016
  • Most research on membrane fouling models in the past are based on theoretical equations in lab-scale experiments. But these studies are barely suitable for applying on the full-scale spot where there is a sequential process such as filtration, backwash and drain. This study was conducted in submerged membrane system which being on operation auto sequentially and treating wastewater from G-water purification plant in Incheon. TMP had been designated as a fouling indicator in constant flux conditions. Total volume of inflow and SS concentration are independent variables as major operation parameters and time-series analysis and prediction of TMP were conducted. And similarity between simulated values and measured values was assessed. Final prediction model by using genetic algorithm was fully adaptable because simulated values expressed pulse-shape periodicity and increasing trend according to time at the same time. As results of twice validation, correlation coefficients between simulated and measured data were $r^2=0.721$, $r^2=0.928$, respectively. Although this study was conducted limited to data for summer season, the more amount of data, better reliability for prediction model can be obtained. If simulator for short range forecast can be developed and applied, TMP prediction technique will be a great help to energy efficient operation.

Effect on water quality and fish habitat improvement of Wonju Cheon by instream flow increasing (유지유량증가 방안에 따른 원주천 수질 및 어류서식환경 개선효과)

  • Choi, Heung Sik
    • Journal of Wetlands Research
    • /
    • v.10 no.3
    • /
    • pp.57-68
    • /
    • 2008
  • For improving water quality and hish habitat environment the targeted instream flows added to the field measurement of low flow at each reach along Wonju Cheon are calculated by depth, velocity, and the present lower channel width with considering the landscape, aquatic environment, and natural ecological function. Target instream flow increasing ranged from $0.03m^3/s$ of upstream to $0.90m^3/s$ of downstream according to the proposed depths of 0.10m to 0.30m and velocity of 0.2m/s. The methods for target instream flow increasing are base flow increasing by watershed management, non polluted discharge inflow from valley and combined sewer by sewerage system modification, and discharges from upstream reservoirs and detention basins near-by stream. The possible increasing flow rates are $0.19m^3/s$ to $3.42m^3/s$ which are 1.4 to 2.5 times of low flow to be measured which are the equivalent targeted instream flows along Wonju Cheon. The BOD-based water quality improvement are analyzed by QUAL2E. The habitat suitability indices by PHABSIM of Zacco temmincki as target species at middle stream of Wonju Cheon improve significantly by low flow increasing, which is very important to improve water quality and fish habitat.

  • PDF

Real-Time Forecasting of Flood Discharges Upstream and Downstream of a Multipurpose Dam Using Grey Models (Grey 모형을 이용한 다목적댐의 유입 홍수량과 하류 하천 홍수량 실시간 예측)

  • Kang, Min-Goo;Cai, Ximing;Koh, Deuk-Koo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.1
    • /
    • pp.61-73
    • /
    • 2009
  • To efficiently carry out the flood management of a multipurpose dam, two flood forecasting models are developed, each of which has the capabilities of forecasting upstream inflows and flood discharges downstream of a dam, respectively. The models are calibrated, validated, and evaluated by comparison of the observed and the runoff forecasts upstream and downstream of Namgang Dam. The upstream inflow forecasting model is based on the Grey system theory and employs the sixth order differential equation. By comparing the inflows forecasted by the models calibrated using different data sets with the observed in validation, the most appropriate model is determined. To forecast flood discharges downstream of a dam, a Grey model is integrated with a modified Muskingum flow routing model. A comparison of the observed and the forecasted values in validation reveals that the model can provide good forecasts for the dam's flood management. The applications of the two models to forecasting floods in real situations show that they provide reasonable results. In addition, it is revealed that to enhance the prediction accuracy, the models are necessary to be calibrated and applied considering runoff stages; the rising, peak, and falling stages.

A study on the measures to use Gunnam flood control reservoir through a reservoir simulation model (저수지 모의 모형을 통한 군남홍수조절지의 활용방안에 관한 연구)

  • Yang, Wonseok;Ahn, Jaehwang;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.6
    • /
    • pp.407-418
    • /
    • 2017
  • Due to geographical features of being close to DPRK (Democratic People's Republic of Korea), the Imjin River basin has difficulties in hydrological observation, and is vulnerable to unexpected flood occurrence. As a countermeasure, Gunnam Flood Control Reservoir construction was planned in 2005. Despite such a structural measure, damages by DPRK's illegal release continues to occur. Futhermore the Imjin River's flow has been decreased due to the effect of continuous drought in the Korean Peninsula since 2012 and DPRK's unilateral storage of water. A new operation method is derived for the Gunnam Flood Control Reservoir in order to cope with drought damages on the Imjin River basin and to ensure efficient response time upon flooding. The operation method maintaining Gunnam Flood Control Reservoir's water level by raising from EL.23.0 m to EL.31.0 m during the flood season for securing reservoir capacity enables to secure additional $14,000,000m^3$ water compared to the existing operation methods. The operation method to store inflow by controlling release to $250m^3/s$ in the early stage of flood has increased 2.66% on average in terms of detention effect of reservoir compared to the existing operation methods. The method enables to secure 19 hours to prepare flood compared to the existing methods.

The Relation Between Water Quality and Structure of Aquatic Ecosystem in Agriculture Reservoir, Otae-ji (농업용저수지인 오태지의 수생태계구조와 수질과의 관련성)

  • Seo, Jung-Kwan;Lee, Hae-Jin;Jeong, Hyun-Gi;Tak, Bo-Mi;Lee, Jae-Kwan;Kim, In-Taek;Lee, Jong-Eun;Hwang, Ui-Wook
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1407-1421
    • /
    • 2010
  • This study was carried out to elucidate the relation between water quality and structure of the aquatic ecosystem in the agriculture reservoir Otae-ji from January to December in 2009. The proportion of forest was 46.98%, which means that non-point sources are major contributor of water pollution in this area. The annual mean COD(Chemical Oxygen Demand) in Otae-ji was $3.6mgL^{-1}$, indicating, level II of environmental standards and the trophic state was mesotrophic. Although total phosporus concentration in the reservoir was high in August due to large inflow of nutrients from outside the reservoir during monsoon season, there was no break out of significant algal bloom in the summer. The seasonal succession of phytoplankton showed that the dinophyta dominated in the the spring, chlorophyta in the summer, chrysophyta and chlorophyta in the autumn and chrysophyta in the winter. In case of zooplankton, rotifers dominated in the most seasons, but cladoceran(Bosmina longirostris) dominated in June and copepod(Nauplii) in August. The macrophyte plants showed diverse species compositon consisted of 3 varieties, 24 species, 23 genera, 15 families and 14 orders. The macroinvertebrates also showed various FFG(Functional Feeding Groups) such as GC(Gathering-Collector), P(Predator), SH(Shedder), FC(Filter-Collector) and PP(Plant-Piercer). Ecosystem stability analysis using aquatic insects was classified as Group I, which has high resilience and resistance indices. A total of 14 species of fish was collected but exotic species such as Lepomis macrochirus and Micropterus salmoides were not found in Otae-ji. In conclusion, the preservation of healthy food wed in the reservoir ecosystem is closely related to water quality management as well as effective prevention of algal bloom by helping good material circulation in aquatic ecosystems.