DOI QR코드

DOI QR Code

An analysis of interception capability of storm water grate inlet in road

도로 빗물받이의 차집능력 분석

  • Lee, Jong-Tae (Division of Civil and Environmental Engrg., Kyonggi Univ.) ;
  • Yoon, Sei-Eui (Division of Civil and Environmental Engrg., Kyonggi Univ.) ;
  • Kim, Kap-Soo (Dept. of Urban Environment, Seoul Development Institute) ;
  • Kim, Young-Ran (Dept. of Urban Environment, Seoul Development Institute) ;
  • Ryu, Taek-Hee (Nam Won Keon Seol Engineering Co.)
  • 이종태 (경기대학교 토목 환경공학부 토목공학) ;
  • 윤세의 (경기대학교 토목 환경공학부 토목공학) ;
  • 김갑수 (서울시정개발연구원 도시환경연구부) ;
  • 김영란 (서울시정개발연구원 도시환경연구부) ;
  • 류택희 (남원건설엔지니어링 수자원부)
  • Published : 2003.06.01

Abstract

The interception capabilities of storm water grate inlet were analyzed in this paper. The hydraulic model lot gutter flow was used to estimate the interception capability. With the consideration of width and length of road, gutter discharges were ranged of 4-15l/sec. The transverse slopes of gutter were selected 4, 7 and 10%. The longitudinal slopes were 0, 2, 5 and 7%. The four sizes of storm water grate inlet were used in this experiments ($30\times40cm,\;40\times50cm,\;40\times100cm,\;40\times150cm$). The total number of experimental cases were 240. As the transverse slopes of gutter increased, the interception capability also increased. As the flow width in gutter and the discharge were lower, the interception efficiencies increased and the longitudinal slopes of road increased, the interception efficiencies decreased. The empirical formula with the factors of total inflow discharge, the longitudinal slope and the transverse slope of gutter were derived. These equations could be used to estimate the intercepting discharge of grate inlet. The reasonable construction space of grate inlet for the road widths, the longitudinal slopes, the transverse slopes and the grate inlet sizes were suggested.

본 연구에서는 도로의 측구 부분을 수리모형으로 제작하여 빗물받이의 차집능력을 검토하였다. 측구의 유량은 도로의 차선(2-4차선) 및 빗물받이 간격(10-30m)을 고려하여 4-15l/sec의 유량을 사용하였고, 도로의 종방향 경사는 0, 2, 5, 7%를 선택하였으며, 측구의 횡경사는 4, 7, 10%를 사용하였다. 유입부의 규모는 $30\times40cm,\;40\times50cm,\;40\times100cm,\;40\times150cm$의 4종류를 사용하였으며, 총 실험 횟수는 240회이다. 측구의 횡경사가 클수록 전체적인 빗물받이의 차집유량은 증가하였다. 차집효율은 흐름폭과 유량이 작을 수록 증가하였고, 종방향 경사가 급할 수록 감소함을 알 수 있었다. 실험의 결과로부터 유입부 규모에 따른 차집유량을 계산할 수 있는 경험식을 제시하였다. 도로의 차선별, 종경사별, 측구의 횡경사별, 유입부 규모별로 적정 빗물받이 간격을 제시할 수 있어서 도로의 빗물받이 설계에 기초자료를 제공하였다.

Keywords

References

  1. 건설교통부 (2001). 도로설계편람(II)
  2. 서울특별시 (2002). 상습침수 해소를 위한 하수도시설 기준 재검토
  3. 토지개발공사 (1999). 단지설계법
  4. 환경부 (1998). 하수도 시설기준
  5. Bauer, W. J and D. C. Woo. (1964). 'Hydraulic design of depressed curd-open inlets', Highway Research Record, No. 58 Highway Research Board, Washington, D.C.
  6. Brown, S. A., S. M. Stein and J. C. Wamer. (1996). Urban Drainage Design Manual(HEC 22)
  7. Burgi, P. H. and D. E. Gober. (1977). Bicyde-safe grate inlets study, Vol. 1 - Hydraulic and safety characteristics of selected grate inlets on continuous grades, Report No. FHWA-RD-7724, Federal Highway Administration
  8. Chen, C. N. and Wong, T. S. W. (1993). 'Critical rainfall duration for maximum discharge from overland plane', Journal of Hydraulic Engineering, Vol. 119, No. 9, pp. 1040-1045 https://doi.org/10.1061/(ASCE)0733-9429(1993)119:9(1040)
  9. FHWA (1984). Dranage of Highway Pavements(HEC 12)
  10. John Hopkins University. (1956). The design of storm water inlets, Dept. Sanitary Engineering and Water Resources, Baltimore
  11. Larry, W. May. (2001). Stormwater collection systems design handbook, McGraw-Hill
  12. Larry, W. May. (2001). Water Resources Engineering, John Wilye & Sons, Inc.
  13. Pugh, C. A. (1980). Bicycle-safe grate inlets study, Vol. 4 - Hydraulic characteristics of slotted drain inlets, Report No. FHWA-RD-79-106, Federal Highway Administration
  14. Rollin, H. H. (1994). 'Improvements in curb-opening and grate inlet efficiency', Transportation Research Record, No. 1471, pp. 24-30
  15. Russam, K. (1969). The hydraulic efficiency and spacing of BS road gulleys, RRL report LR 27, Road Research Laboratory, Ministry of Transport, Crowthome, Berkshire UK.
  16. Smart, P. and Herbertson, J. G. (1992). Drainage Design, Blckie and Son Ltd.
  17. Uyumaz, A. (1994) 'Highway storm drainage with kerb-opening inlets', Science of the Total Environment, Vol. 146, pp. 471-478 https://doi.org/10.1016/0048-9697(94)90271-2
  18. Walesh, S. G. (1989). Urban Surface Water Management, Wiley-Interscience
  19. Whiffin, A. C and Young, C. P (1973). Drainage of level or nearly level roads, Laboratory Report No. 602. Crowthome, Berkshire: Transport and Road Research Laboratory
  20. Wong, T. S. W. (1994). 'Kinematic wave method for detemination of road drainage inlet spacing', Advances in water resources, Vol. 17, pp. 329-336 https://doi.org/10.1016/0309-1708(94)90009
  21. Wong, T. S. W. (1997). 'Effect of maximum flood width on road drainage inlet spacing', Water Science and Technology, Vol. 36, No. 8, pp. 241-246 https://doi.org/10.1016/S0273-1223(97)00592-1

Cited by

  1. Intercepted flow equation at grate inlet on road vol.49, pp.6, 2016, https://doi.org/10.3741/JKWRA.2016.49.6.537
  2. Applications of EPA-SWMM and FHWA Hydraulic Toolbox to Analyze Cause of Urban Inundation vol.15, pp.1, 2015, https://doi.org/10.9798/KOSHAM.2015.15.1.169