• Title/Summary/Keyword: water footprints

Search Result 17, Processing Time 0.025 seconds

Projecting the climatic influences on the water requirements of wheat-rice cropping system in Pakistan (파키스탄 밀-옥수수 재배시스템의 기후변화를 반영한 필요수량 산정)

  • Ahmad, Mirza Junaid;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.486-486
    • /
    • 2018
  • During the post green revolution era, wheat and rice were the main crops of concern to cater the food security issues of Pakistan. The use of semi dwarf high yielding varieties along with extensive use of fertilizers and surface and ground water lead to substantial increase in crop production. However, the higher crop productivity came at the cost of over exploitation of the precious land and water resources, which ultimately has resulted in the dwindling production rates, loss of soil fertility, and qualitative and quantitative deterioration of both surface and ground water bodies. Recently, during the past two decades, severe climate changes are further pushing the Pakistan's wheat-rice system towards its limits. This necessitates a careful analysis of the current crop water requirements and water footprints (both green and blue) to project the future trends under the most likely climate change phenomenon. This was done by using the FAO developed CROPWAT model v 8.0, coupled with the statistically-downscaled climate projections from the 8 Global Circulation Models (GCMs), for the two future time slices, 2030s (2021-2050) and 2060s (2051-2080), under the two Representative Concentration Pathways (RCPs): 4.5 and 8.5. The wheat-rice production system of Punjab, Pakistan was considered as a case study in exploration of how the changing climate might influence the crop water requirements and water footprints of the two major crops. Under the worst, most likely future scenario of temperature rise and rainfall reduction, the crop water requirements and water footprints, especially blue, increased, owing to the elevated irrigation demands originating from the accelerated evapotranspiration rates. A probable increase in rainfall as envisaged by some GCMs may partly alleviate the adverse impacts of the temperature rise but the higher uncertainties associated with the predicated rainfall patterns is worth considering before reaching a final conclusion. The total water footprints were continuously increasing implying that future climate would profoundly influence the crop evapotranspiration demands. The results highlighted the significance of the irrigation water availability in order to sustain and improve the wheat-rice production system of Punjab, Pakistan.

  • PDF

Footprints of water molecules on Si(001) and co-adsorption configurations obtained via low temperature scanning tunneling microscopy

  • Tham, Tran Thi;Son, Lee-Seul;Oh, Suhk-Kun;Kang, Hee-Jae;Kim, Han-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.86-86
    • /
    • 2010
  • Water adsorption on Si(001)-c($4{\times}2$) surface is investigated at low temperature by using scanning tunneling microscope (STM) and ab initio pseudopotential calculations. $H_2O$ configurations of single and cluster of two molecules reveal "Y", "X" and "W" depressions as footprints on the surface. Atomic structures of $H_2O$ molecules, which are dissociatively adsorbed on the Si(001)-c($4{\times}2$) surface, are studied with simulated and STM images of the filled states. The generation processes of the growth configurations are systematically considered with elapsed time.

  • PDF

Development of Landsat-based Downscaling Algorithm for SMAP Soil Moisture Footprints (SMAP 토양수분을 위한 Landsat 기반 상세화 기법 개발)

  • Lee, Taehwa;Kim, Sangwoo;Shin, Yongchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.49-54
    • /
    • 2018
  • With increasing satellite-based RS(Remotely Sensed) techniques, RS soil moisture footprints have been providing for various purposes at the spatio-temporal scales in hydrology, agriculture, etc. However, their coarse resolutions still limit the applicability of RS soil moisture to field regions. To overcome these drawbacks, the LDA(Landsat-based Downscaling Algorithm) was developed to downscale RS soil moisture footprints from the coarse- to finer-scales. LDA estimates Landsat-based soil moisture($30m{\times}30m$) values in a spatial domain, and then the weighting values based on the Landsat-based soil moisture estimates were derived at the finer-scale. Then, the coarse-scale RS soil moisture footprints can be downscaled based on the derived weighting values. The LW21(Little Washita) site in Oklahoma(USA) was selected to validate the LDA scheme. In-situ soil moisture data measured at the multiple sampling locations that can reprent the airborne sensing ESTAR(Electronically Scanned Thinned Array Radiometer, $800m{\times}800m$) scale were available at the LW21 site. LDA downscaled the ESTAR soil moisture products, and the downscaled values were validated with the in-situ measurements. The soil moisture values downscaled from ESTAR were identified well with the in-situ measurements, although uncertainties exist. Furthermore, the SMAP(Soil Moisture Active & Passive, $9km{\times}9km$) soil moisture products were downscaled by the LDA. Although the validation works have limitations at the SMAP scale, the downscaled soil moisture values can represent the land surface condition. Thus, the LDA scheme can downscale RS soil moisture products with easy application and be helpful for efficient water management plans in hydrology, agriculture, environment, etc. at field regions.

Effect of water scarcity during thermal-humidity exposure on the mineral footprint of sheep

  • Nejad, Jalil Ghassemi;Lee, Bae-Hun;Kim, Ji-Yung;Park, Kyu-Hyun;Kim, Won-Seob;Sung, Kyung-Il;Lee, Hong-Gu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.1940-1947
    • /
    • 2020
  • Objective: Combination of two stressors on alteration of mineral footprints in animals needs due attention to meet maximum production and welfare, particularly in grazing sheep. This study tested whether ewes (Ovis aries) exposed to water deprivation and thermal-humidity stressors had altered mineral footprints in their wool, serum, urine, and feces. Methods: Nine ewes (age = 3 years; mean body weight = 41±3.5 kg) were divided among a control group with free access to water, and treatment groups with water deprivation lasting either 2 h (2hWD) or 3 h (3hWD) after feeding. Using a 3×3 Latin square design, animals were assigned to treatment groups for three sampling periods of 21 days each (n = 9). Blood was collected by jugular venipuncture. Wool was collected at the end of periods 2 and 3. Metabolic crates designed with metal grated floors were used for urine and feces collection. We measured sodium (Na), magnesium (Mg), phosphorus (P), chloride (Cl), calcium (Ca), manganese (Mn), copper (Cu), iron (Fe), and zinc (Zn). Results: The wool mineral levels did not differ between the treatment groups, although K was marginally lower (p = 0.10) in the 2hWD group. The serum and urine mineral levels did not differ between the treatments (p>0.05). Fecal K was significantly lower in the 2hWD group than in the other groups (p≤0.05). Conclusion: In conclusion, water deprivation and thermal-humidity exposure altered the excretion of K, but not of other minerals, in the wool, urine, feces, or serum of ewes. Thus, no additional mineral supplementation is needed for water deprived ewes during thermalhumidity exposure.

Development of Agricultural Drought Assessment Approach Using SMAP Soil Moisture Footprints (SMAP 토양수분 이미지를 이용한 농업가뭄 평가 기법 개발)

  • Shin, Yongchul;Lee, Taehwa;Kim, Sangwoo;Lee, Hyun-Woo;Choi, Kyung-Sook;Kim, Jonggun;Lee, Giha
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.57-70
    • /
    • 2017
  • In this study, we evaluated daily root zone soil moisture dynamics and agricultural drought using a near-surface soil moisture data assimilation scheme with Soil Moisture Active & Passive (SMAP, $3km{\times}3km$) soil moisture footprints under different hydro-climate conditions. Satellite-based LANDSAT and MODIS image footprints were converted to spatially-distributed soil moisture estimates based on the regression model, and the converted soil moisture distributions were used for assessing uncertainties and applicability of SMAP data at fields. In order to overcome drawbacks of the discontinuity of SMAP data at the spatio-temporal scales, the data assimilation was applied to SMAP for estimating daily soil moisture dynamics at the spatial domain. Then, daily soil moisture values were used to estimate weekly agricultural drought based on the Soil Moisture Deficit Index (SMDI). The Yongdam-dam and Soyan river-dam watersheds were selected for validating our proposed approach. As a results, the MODIS/SMAP soil moisture values were relatively overestimated compared to those of the TDR-based measurements and LANDSAT data. When we applied the data assimilation scheme to SMAP, uncertainties were highly reduced compared to the TDR measurements. The estimated daily root zone soil moisture dynamics and agricultural drought from SMAP showed the variability at the sptio-temporal scales indicating that soil moisture values are influenced by not only the precipitation, but also the land surface characteristics. These findings can be useful for establishing efficient water management plans in hydrology and agricultural drought.

A Study on the Applicability of Water Footprint Methodology in Korea by Analyzing Domestic Water Resources Statistics (국내 물 자원 통계자료 분석을 통한 물발자국 방법론 국내 적용 가능성 확인 연구)

  • Kim, Sun Uk;Jo, Seo Weon;Ahn, Jae Hyun;Lee, Han Woong;Yeon, Sung Mo
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.146-153
    • /
    • 2018
  • The water footprint is an important component of the Single Market for Green Product initiative based on the EU's Roadmap to a Resource Efficient Europe. In July 2014, the EU has established the International Standard for Water Footprint (ISO 14046) and Korea has complied with the Korean Industrial Standard (KS I ISO 14046) in April 2015. If a certification system based on the international standard (ISO 14046) is introduced, developing countries such as India and Vietnam, which are not equipped with bases, can become a trade barriers in exporting, so Korea should establish a strategy to reverse them. On the other hand, water footprints are designed to take into account local environmental impacts when compared to similar footprints (eg, carbon footprint) using LCA, so that products manufactured and manufactured in Korea will have an impact on domestic waters Should be considered. Therefore, the method of the water footprint should conform to the standard for compatibility with other countries. In order to consider the domestic water condition, it is necessary to identify suitable indicator or factor for estimating water footprint on Korea. For this purpose, this study analyzed the water footprint estimation study conducted at domestic and foreign based on international standards and through the analysis of statistical data related to domestic water resources, we confirmed the applicability of the water footprint methodology in Korea.

A Study on the Water Footprint of Korean Food Guide and Recommended Meal Plan (한국인 식사구성안의 식품군 및 권장식단의 물발자국에 관한 연구)

  • Hyun Ju Kim
    • The Korean Journal of Food And Nutrition
    • /
    • v.36 no.1
    • /
    • pp.69-85
    • /
    • 2023
  • Sustainable and healthy diet is a challenge in recent world. Despite the global depletion of water resources, Korea has no system for controlling its water footprint. This study established the water footprint tables of Korean food using the Water Footprint Network databases, and applied them into two meal plans for 19~64 year-old adults recommended in the Dietary Reference Intakes for Koreans 2020. Nut, oil, and meat's water footprints were higher and those of fruit and vegetable were lower. Sesame oil had the highest water footprint of 21,793 L/kg and pineapple had the lowest domestic water footprint of 102 L/kg. Water footprint of one serving size of beef was 925 L, that of chicken was 260 L, and those of soybean were 43 L in global and 81 L in domestic. The water footprint of the recommended 2,400 kcal meal plan was 2,882 L, and that of 1,900 kcal meal plan was 1,915 L. The water resources can be saved by choosing food with lower water footprint. The results of this study can be used in the further researches for more sustainable and healthier Korean diet.

Towards water-efficient food systems: assessing the impact of dietary change and food waste reduction on water footprint in Korea

  • Qudus Adeyi;Bashir Adelodun;Golden Odey;Kyung Sook Choi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.184-184
    • /
    • 2023
  • Globally, agriculture is one of the largest consumers and polluters of water resources, contributing to the unsustainable use of limited water resources. To reduce the resource use and environmental footprints associated with current and future food systems, researchers and policy makers have recommended the transition to sustainable and healthier diets and the reduction of food loss and waste along the food supply chain. However, there is limited information on the synergistic effects and trade-offs of adopting the two measures. In this study, we assessed the water-saving potential of the two measures in South Korea using environmentally extended input-output relying on the EXIOBASE database for the reference year 2020, along with scenario analysis to model the potential outcomes. Specifically, we analyzed scenarios where meat consumption was reduced by 30% and 50% and in combination with a 50% reduction in food waste at the consumption stage for each scenario. According to our findings, by considering individual measures of dietary change and food waste reduction, shifting to a diet with 30% and 50% less meat consumption could lead to reduction in water footprint by 6.9% and 7.5%, respectively, while 50% reduction in food waste at the consumption stage could save about 14% of water footprint. However, the synergistic effects of the two measures such as 30% less meat consumption and 50% food waste reduction, and 50% less meat consumption and 50% food waste reduction result to 20% and 24% reductions in water footprint, respectively. Moreover, our findings also showed that increasing food consumption with high environmental impacts could promote resources use inefficiency when waste occurs. Thus, policy strategies that address synergistic effects of both dietary change and food waste reduction should be strengthened to achieve sustainable food system. International and national policies can increase resource efficiency by utilizing all available reduction potentials while considering strategies interactions.

  • PDF

Assessment of the Impacts of Rice Self-sufficiency on National Rresources in Korea through Water-Energy-Food-Land Nexus Approach (물-에너지-식량-토지 넥서스를 통한 미래 쌀 수급 변화에 따른 자원별 이용량 변화 분석)

  • Lee, Sang-Hyun;Choi, Jin-Yong;Yoo, Seung-Hwan;Hur, Seung-Oh
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.93-103
    • /
    • 2018
  • The aim of this study is to apply the Water-Energy-Food-Land Nexus approach which can analyze the trade-offs among resources, and assess the holistic impacts of food security. First, we applied rice as a study crop and analyzed the trend of consumption of rice and the area of paddy fields. Second, the portfolios of water, energy, and land for rice production were constructed using data of footprints and productivity. Finally, the self-sufficiency ratio (SSR) of rice in target year was set as food security scenario and assessed the impacts of food security on water, energy, and land availability. In 2030, the SSR of rice decreased to 87 %, and water use for producing rice decreased from 4,728 to $3,350million\;m^3$, and the water availability index increased from 0.33 to 0.53. However, food security is essential issue and we set the 50 % and 100 % SSR of rice as high and low food security scenarios. For 100% SSR in 2030, about $3,508million\;m^3$ water was required and water availability index reached to 0.5. In other words, there is the trade-off between food security and water-energy-lands availability. Therefore, it is difficult to make a decision whether a high level of SSR is better or worse. However, this study showed the both positive and negative impacts by change of food security and it can be useful for setting the policy decision considering both food security and sustainable resource management at the same time.

Comparison of Land Farming and Chemical Oxidation based on Environmental Footprint Analysis (환경적 footprint 분석을 통한 토양경작법과 화학적산화법의 비교)

  • Kim, Yun-Soo;Lim, Hyung-Suk;Park, Jae-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.7-14
    • /
    • 2015
  • In this study, land farming and chemical oxidation of a diesel-contaminated site is compared to evaluate the environmental impact during soil remediation using the Spreadsheet for Environmental Footprint Analysis by U.S. EPA. Each remediation process is divided into four phases, consisting of soil excavation, backfill and transportation (Phase 0), construction of remediation facility (Phase 1), remediation operation (Phase 2), and restoration of site and waste disposal (Phase 3). Environmental footprints, such as material use, energy consumption, air emission, water use and waste generation, are analyzed to find the way to minimize the environmental impact. In material use and waste generation, land farming has more environmental effect than chemical oxidation due to the concrete and backfill material used to construct land farming facility in Phase 1. Also, in energy use, land farming use about six times more energy than chemical oxidation because of cement production and fuel use of heavy machinery, such as backhoe and truck. However, carbon dioxide, commonly considered as important factor of environmental impact due to global warming effect, is emitted more in chemical oxidation because of hydrogen peroxide production. Water use of chemical oxidation is also 2.1 times higher than land farming.