• Title/Summary/Keyword: water foaming

Search Result 157, Processing Time 0.026 seconds

A Study of Electro-foaming Fusion Wrap for Polyethylene Sewer Pipe (폴리에틸렌 하수관 연결용 전기발포융착 이음관에 관한 연구)

  • Kye, Hyoung-San;Joo, Kyung-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.343-354
    • /
    • 2012
  • A electro-foaming fusion wrap fitting for polyethylene sewer pipe was built and foaming mechanism has been studied. A foaming sheet, supporting sheet and clamping band is assembled into a all-in-one structured electro-foaming fusion wrap fitting. To specify foaming and fusion of electro-foaming fusion wrap for PE sewer pipe, series of fusion tests were performed in various conditions. A parallel plate compression test up to 50 % of inner diameter deflection has been performed to check integrity of fusion quality and it was found that there were no visible signs of crack in wrapped area of fitting. Also air tightness test based on KS M 3511-2 has been performed to evaluate perfectness of wrap fusion quality and we found there were no pressure drop up to 10 times higher value than KS standard regulation.

Properties of the Concrete Foaming Agent According to Temperature and Concentration (기포제 온도 및 희석농도에 따른 콘크리트용 기포제의 특성)

  • Choi, Ji-Ho;Lee, Min-Jae;Jeong, Ji-Young;Hwang, Eui-Hwan;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.247-249
    • /
    • 2011
  • Pre-foaming, one of the manufacturing way of foamed concrete, is influenced by foaming agent. When the foaming agent diluted with water, surface tension and viscosity are varied. Therefore, this study is reviewing the surface tension, viscosity and unit weight of foam by experimental factor such as foaming agent types(AES, AOS, VS FP) and foam agent dilution concentration (1, 3, 5%) and temperature of materials (5, 10, 20℃). As an expeimental result, the surface tension and viscosity slightly increased with increasing concentrations. Meanwhile, when increasing temperature, the viscosity has decreased. FP produce relatively stable foams only in case 3% or more, which produce unstable foams containing large amount of water content by decreasing only insignificant surface tension when diluted at concentration of 1%.

  • PDF

Foaming Capacity and Foaming Stability of Protein Recovered from Red Crab Processing Water (홍게 가공회수 단백질의 거품 형성력 및 안정성)

  • Kim, Yong-Jin;Sin, Tae-Seon;O, Hun-Il
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.3
    • /
    • pp.325-330
    • /
    • 1996
  • Foaming capacity (FC) and stability (FS) of protein recovered from red crab (Chitinonecetes opilio) processing in water and soybean protein isolate were determined at pH 2.0~10.0 in water and NaCl solution. The FC values for both proteins showed the lowest values at the isoelectric point (pH 4.0) and increased nth an increase in pH above the isoelectric point. FC of RCP was higher than that of SPI at pH 10.0 in water and both NaCl solutions. FC of SPI increased with an increase in NaCl concentration at pH 4.0 and 6.0, but FC of RCP was not affected. The highest FS values for both proteins were obtained at pH 4.0 in water. At pH 2.0, FC of RCP decreased with NaCl concentration increase, but FS increased. NaCl concentration had little effect on FS of RCP at pH 4.0 and 6.0, but the FS decreased at pH 10.0. FS of SPI was similar to that of RCP at pH 2.0 and increased with NaCl concentration Increase from 0.1 to 0.5M NaCl at pH 10.0.

  • PDF

Cause Diagnosis and Reduction Measures of Foaming in the Treated Wastewater Outlet of D Wastewater Treatment Plant (하수처리수 방류구의 거품발생 원인진단 및 저감방안: 국내 하수처리장 사례를 중심으로)

  • Shin, Jae-Ki;Cho, Youngsoo;Kim, Youngsung;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.2
    • /
    • pp.124-129
    • /
    • 2016
  • This study was conducted to suggest the cause analysis and mitigation measures of foaming generated in the effluent of wastewater treatment plant. The foam generated in the outlet connected with the tidal river system was identified as structural problems. And the main cause of foaming was air entrainment by an impinging jet and the internal accumulation by the diffusion barrier. In consideration of these conditions, it present the effective ways such as micro-screen and submerged outlet, to mitigate the foaming generated in the water channel and outlet end.

Experimental Studies on Influence of Foaming Agents on the Properties of Mortar (기포제가 모르터의 제성질에 미치는 영향에 관한 실험적 연구)

  • Sung, Chan-Yong;Hwang, Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.1
    • /
    • pp.46-61
    • /
    • 1985
  • This study was performed to obtain the basic data which can be applied to the use of foaming mortars. The data was based on the properties of foaming mortars depending upon various mixing ratios and addings to compare those of cement mortar. The foaming agents which was used at this experiment were pre-foamed type and mix-foaming type which is being used as mortar structures. The foaming mortar, mixing ratios of cement to fine aggregate were 1:1, 1: 2, 1 : 3 and 1 : 4. The addings of foaming agents were 0.0%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3.0% of cement weight. The results obtained were summarized as follows; 1. At the mixing ratio of 1 : 1, the lowest water-cement ratios were showed by foaming mortars, respectively. But it gradually was increased in poorer mixing ratio and decreased in more addition of foaming agent. The water-cement ratios were decreased up to 1. 8~22. 0% by G, 2. 2~24. 1 % by U and 0. 7~53. 1% by J foaming mortar than cement mortar. 2, At the mixing ratio of 1 : 1, the highest bulk densities were showed by foaming mortars, respectively. But, it gradually was decreased in poorer mixing ratio and more addition of foaming agent. The bulk densities were decreased up to 1. 4~20. 7% by G, 2. 3~23. 7% by U and 26. 5~56. 5% by J foaming mortar than cement mortar. Therefore, foaming mortar could be utilized to the constructions which need low strengths. 3. At the mixing ratio of 1:1, the lowest absorption rates were showed by foaming mortars, respectively. But, it gradually was increased in poorer mixing ratio and more addition of foaming agent. Specially, according to the absorption rate when immersed in 72 hours, the absorption rates were showed up to 1. 01~1. 24 times by G, 1. 03~1. 58 times by U and 1. 10~5. 91 times by J foaming mortar than cement mortar. It was significantly higher at the early stage of immersed time than cement mortar. 4. At the mixing ratio of 1:1, the lowest air contents were showed by foaming mortars, respectively. But, it gradually was increased in poorer mixing ratio and more addition of foaming agent. Air contents were contented up to 4. 0~17. 2 times by G, 5. 2~23. 2 times by U and 23. 8~74. 5 times by J foaming mortar than cement mortar. 5. At the mixing ratio of 1 : 1, the lowest decreasing rates of strengths were showed by foaming mortars, respectively. But, it gradually was increased in poorer mixing ratio and more addition of foaming agent. Specially, the strengths of 28 days were decreased 0. 4~2. 2% than those of 7 days by foaming mortar, respectively. Also, the correlations between compressive and tensile strength, compressive and ending strength, tensile and bending strength were highly significant as a straight line shaped, respectively. 6. The correlations between absorption rate, air content, compressive strength and bulk density, absorption rate, compressive strength and air content were highly significant, respectively. The multiple regression equations of water-cement ratio, bulk density, absorption ate, air content, compressive strength, tensile strength and bending strength were computed depending on a function of mixing ratio and addition of foaming agent. It was highly significant, respectively. 7. At the mixing ratio of 1 : 1, the highest strengths were showed by cement mortar and foaming mortars, by chemical reagents. But, it gradually was decreased in poorer mixing ratio. The decreasing rates of strengths were in order of H $_2$S0 $_4$, HNO$_3$ and HCI, J,U,G foaming mortar and cement mortar. Specially, at the each mixing ratio, each chemical reagent and 3.0% of foaming agent, J foaming mortar was collapsed obviously. Therefore, for the structures requiring acid resistence, adding of foaming agent should be lower than 3.0%.

  • PDF

Aquacell Foaming Process On PMMA (Aquacell Process를 이용한 PMMA의 발포)

  • Lee, Hyun-Joo;Cha, Sung-Woon;Yoon, Jae-Dong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.18-24
    • /
    • 1999
  • Microcellular foaming is being researched as a method of maintaining and improving the mechanical characteristics of plastics as well as saving the material costs. This can not only improve the mechanical properties including impact strength of plastic by producing cells with the size of few ${\mu}$m diameters within the plastic, but also can save the material cost of plastic products with the general volumetric expansion of 2 to 10 times. But quite a long time is required for the gas to be absorbed in the plastic. Therefore consistent research should be done to reduce the saturation time of gas into the plastic and this paper provides the method of water microcellular foaming process as one of the methods using the high diffusivity of water. In addition, we can improve impact property of foamed plastic by using this method.

  • PDF

Evaluation of the Water Purification Efficiency of Waste LCD Glass Media by Using Foaming Technology (발포기술을 이용한 폐 LCD유리 여재의 수질정화능력 평가)

  • Ahn, Tae-Woong;Choi, I-Song;Oh, Jong-Min
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.369-376
    • /
    • 2010
  • The purpose of this study is to reprocess Waste-LCD(Liquid Crystal Display), to widely increase specific surface-area by foaming agent in the process of reprocessing and to use as a substrate of water treatment which is increased the ability of biological treatment, as well as to control non-point source pollutants produced by surface run off during rainfall with using this substrate, and to improve water quality of public watershed as developing substrate for water treatment to be able to purify second treated water which is exhausted at the wastewater treatment plant. The average removal efficiency of Waste-LCD that using the foaming technology was SS 71.2%, BOD 55.7%, COD 58.4%, T-N 29.5% and T-P was 50.3%. Almost Media, early stage showed low removal efficiency of SS and BOD. However, it became high when the microorganism adhered the Media. The variation of SS removal efficiency was high by inflow concentration of SS. The reason for the Media 4 showed high SS removal efficiency is that it has wide specific surface-area, and also it has a pore. All in all, it shows floating matter treatment ability not only inside but it also works outside of the substrate.

Effects of Foaming Agent on the Characteristic of Mortar (기포제(起泡劑)가 모르터의 특성(特性)에 미치는 영향(影響))

  • Kim, Seong Wan;Kang, Sin Up;Cho, Seong Seup;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.11 no.1
    • /
    • pp.133-145
    • /
    • 1984
  • To study the effect of foaming agent on the characteristic of mortar, the tests of water-cement ratio and bulk density of mortar were done under the different mixing ratio with G. U and J foaming agents. The results obtained were summarized as follows: 1. At the mixing ratio of 1 : 4 and 0.5% of foaming agent, the highest water-cement ratio was 90% by G, 88.3% by U and 70% by J foaming agent, respectively, being lower than 91.6% of that of cement mortar. 2. At the mixing ratio of 1 : 3 and 3.0% of foaming agent, the water-cement ratio was decreased up to 22.0% by G and 24.1% by U foaming agent, respectively, but it gradually was increased in richer and poorer mixing ratio. At the mixing ratio of 1 : 4 and 3.0% of foaming agent, the water-cement ratio was decreased up to 53.1% by J foaming agent, but it gradually was increased in richer mixing ratio. 3. At the mixing ratio of 1 : 1 and 0.5% of foaming agent, the highest bulk density was $1.981g/cm^3$ by G, $1.863g/cm^3$ by U and $1.149g/cm^3$ by J foaming agent, respectively, being lower than $2.048g/cm^3$ of that of cement mortar. 4. At the mixing ratio of 1 : 2 and 3.0% of foaming agent, the bulk density was decreased up to 20.7% by G, 23.7% by U and 56.5% by J foaming agent, respectively, but it gradually was increased in richer and poorer mixing ratio. 5. The water-cement ratio and bulk density were decreased in more addition of foaming agent, respectively, multiple regression equations of water-cement ratio and bulk density were computed depending on a function of mixing ratios and addition of foaming agents.

  • PDF

Preparation of Solvent-Free Low Foaming Scouring Agents and Their Scouring Characteristics (무용제형 저기포성 정련제의 제조 및 정련특성)

  • Park, Hong-Soo;Ahn, Sung-Hwan;Shim, Il-Woo;Jo, Hye-Jin;Hahm, Hyun-Sik;Kim, Yeoung-Chan;Kim, Seong-Kil
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • Solvent-free low foaming scouring agents (LFSC) were prepared by blending of 2-ethylhexylaminoethyl sulfate (2-EHAS), POE(10) octadecylbenzyl- ammonium chloride (POBAC) and Sedlan FF-200 (FF-200). As the results of several tests, 2-EHAS/POBAC/FF-200/water (8g/12g/20g/60g) mixture (LFSC-5) showed good cleaning power, penetrating ability and stability to alkali, and gave less problem in water pollution. The foaming power of LFSC-5 measured by Ross and Miles method was 8mm foam height immediately after foaming, and that measured by Ross and Clark method was less than 300mm foam height at $30^{\circ}C$, and 18mm at $80^{\circ}C$. As a result, LFSC-5 proved a good low foaming scouring agent for fiber.

Development of Urethane Foams for Planting Media from Woodwastes (목질폐재를 이용한 식물식재용 우레탄폼의 개발)

  • Cho, Nam-Seok;Seo, Won-Sung;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.43-49
    • /
    • 1998
  • The availability of large quantities of waste woods provides an impetus for investigating woody biomass potential uses. Polyurethane (PU) foams are prepared with reacting isocyanates and polyols, and are used. in various industry fields. Thus, lignocellulosic waste raw-materials are proposed as replacement for synthetic polyol to PU foam formulation. In this study PU foams were manufactured from liquefied woods, methanediisocyanate(MDI), catalyst, foaming stabilizer, and viscosity aids. The polyol content, isocyanate.hydroxyl group (NCO/OH) ratio, and water content were varied to evaluate their effects on the foaming and water absorption of the PU foams. Less than 400 Molecular weight. of polyethylene glycol(PEG) and 1 to 3 solvent to woody raw-material ratio were desirable for liquefying woody materials. Liquefying rate was increased with more than 3 % addition of inorganic and organic catalysts and raising reaction temperature more than $150^{\circ}C$. Addition of starch enhanced liquefying of woody materials. Fourty percents of starch resulted in about 90% liquefying rates. Foaming rates were increased with increasing moisture contents of liquefied wood. Moisture contents of 0.6% resulted in 5 time-foaming rates, and seven percents of moisture contents more than 30 time-foaming rates. But, an increase in water content may result in a decrease in cross-links between wood polyol and isocyanate, because the NCO/OH ratio is constant. Increasing moisture contents have significantly decreased density of PU foams. The optimum water content should be about 2.5% or less in this adopted condition.

  • PDF