• Title/Summary/Keyword: water flow control

Search Result 1,248, Processing Time 0.037 seconds

Performance Test for a Horizontal Regenerative Evaporative Cooler (수평형 재생증발식 냉방기의 성능시험)

  • Song, Gwi-Eun;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.621-626
    • /
    • 2006
  • Regenerative evaporative cooling is known as an environment-friendly and energy efficient cooling method. A regenerative evaporative cooler (REC) consisting of dry and wet channels is able to cool down the air stream below the inlet wet-bulb temperature. In the regenerative evaporative cooler, the cooling effect is achieved by redirecting a portion of the air flown out of the dry channel into the wet channel and spraying water onto the redirected air. In this study, a horizontal regenerative cooler is considered. In the horizontal regenerative cooler, the flow direction of evaporating water has a right angle to the flow direction of supply air. This difference was investigated with visualization technique and simplified 2-module performance test was done in a thermo-environment chamber. Optimum design configuration is changed due to the wet channel which are easily fully covered with evaporating water and block the air flow inside the channel. Applying the optimized fin configuration design with the highly wetting surface treatment, a regenerative evaporative cooler was fabricated and tested to Identify the cooling performance improvement and operation characteristics. From the experimental results at the intake condition of $32^{\circ}C$ and 50% RH, the supply temperature was measured to be around $23.4^{\circ}C$. The cooling effectiveness based on the inlet dewpoint temperature was evaluated 73% which is almost close to the design expectation.

  • PDF

Embedded System-Based Fast Fourier Transform Method for Measuring Water Content in Crude Oil

  • Shuqi Jia;Xiaolei Wang;Zhe Kan
    • Journal of Information Processing Systems
    • /
    • v.20 no.3
    • /
    • pp.399-408
    • /
    • 2024
  • The moisture content of crude oil notably affects various aspects of oil production, storage, transportation, and exploration. However, accurately measuring this moisture content is challenging because of numerous influencing factors, leading to a lack of precision in existing detection methods. This inadequacy hinders the progress of China's petroleum industry. To overcome these challenges, this paper proposes a conductivity-based method for measuring crude oil moisture content. By employing an embedded system, we designed a sensor comprising five electrodes. Additionally, we developed signal excitation and signal processing circuits. Moreover, a software program was designed to analyze and compute the output signal using fast Fourier transform operations. This facilitated the identification of flow patterns, computation of relevant flow rates, and establishment of correlation rates based on frequency spectral characteristics. Based on experimental results, we established a functional relationship between measurement parameters and crude oil moisture content. This study enhanced the precision of moisture content measurement, thereby addressing existing limitations and fostering the advancement of China's petroleum industry.

Relationship of Early Lactation and Bovine Somatotropin to Water Metabolism and Mammary Circulation of Crossbred Holstein Cattle

  • Maksiri, W.;Chanpongsang, S.;Chaiyabutr, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.11
    • /
    • pp.1600-1608
    • /
    • 2005
  • The study was carried out to evaluate the effect of exogenous bovine somatotropin on water metabolism in relation to mammary function in early lactation of crossbred Holstein cattle. Ten, 87.5% crossbred Holstein cattle were divided into two groups of 5 animals each. At day 60 of lactation, the control group was given placebo while animals in the experimental group were given recombinant bovine somatotropin (rbST) by subcutaneous injection with 500 mg of rbST (14-days prolonged-release rbST). In rbSTtreated animals, milk yield increased 19.8%, which coincided with a significant increase in water intake (p<0.01), while DM daily intake was not different when compared to the control animals. Water turnover rate as absolute values significantly increased (p<0.05), while the biological half-life of water did not change in rbST-treated animals. Total body water (TBW) and total body water space (TOH) as absolute values significantly increased (p<0.01) in rbST-treated animals, while it was decreased in the control animals. Absolute values of empty body water (EBW) markedly increased (p<0.05), which was associated with an increase in the extracellular fluid (ECF) volume. Absolute values of plasma volume and blood volume were also significantly increased (p<0.05) in rbST-treated animals. The increase in mammary blood flow in rbST-treated animals was proportionally higher than an increase in milk production. The plasma IGF-1 concentration was significantly increased (p<0.01) in rbST-treated animals when compared with those of control animals during the treatment period. Milk fat concentration increased during rbST treatment, while the concentrations of both protein and lactose in milk were not affected. The present results indicate that rbST exerts its effect on an increase in both TBW and EBW. An increased ECF compartment in rbST-treated animals might partly result from the decrease in fat mass during early lactation. The action of rbST on mammary blood flow might not be mediated solely by the action of IGF-1 for increase in blood flow to mammary gland. An elevation of body fluid during rbST treatment in early lactation may be partly a result of an increase in mammary blood flow in distribution of milk precursors to the gland.

An Experiment on the Flow Control Characteristics of a Passive Fluidic Device (피동적 유체기구의 유동 조절 특성에 관한 실험)

  • Seo, Jeong-Sik;Song, Chul-Hwa;Cho, Seok;Chung, Moon-Ki;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.338-345
    • /
    • 2000
  • A model testing has been performed to investigate the flow characteristics of a vortex chamber, which plays a role of a flow switch and passively controls the discharge flow rate. This method of passive flow control is a matter of concern in the design of advanced nuclear reactor systems as an alternative to the active flow control to provide emergency water to the reactor core in case of postulated accidents like LOCA (Loss-Of-Coolant Accident). By changing the inflow direction in the vortex chamber and varying the flow resistance inside the chamber, the vortex chamber can control passively the injection flowrate. Fundamental characteristics such as discharge flow rate and pressure drop of the vortex chamber are measured, and its parametric effects on the performance of the vortex chamber are also systematically investigated.

Analysis of Debris Flow Disaster Area according to Location Change of Check Dam using Kanako-2D (Kanako-2D를 이용한 사방댐 위치 변화에 따른 토석류 피해지 분석)

  • Kim, Young Hwan;Jun, Kye-Won
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.128-134
    • /
    • 2018
  • With the increase in frequency of typhoons and heavy rains following the climate change, the scale of damage from the calamities in the mountainous areas has been growing larger and larger, which is different from the past. For the case of Korea where 64% of land is consisted of the mountainous areas, establishment of the check dams has been drastically increased after 2000 in order to reduce the damages from the debris flow. However, due to the lack of data on scale, location and kind of check dams established for reducing the damages in debris flow, the measures to prevent damages based on experience and subjective basis have to be relied on. Under this study, the high-precision DEM data was structured by using the terrestrial LiDAR in the Jecheon area where the debris flow damage occurred in July 2009. And, from the numerical models of the debris flow, Kanako-2D that is available to reflect the erosion and deposition action was applied to install the erosion control facilities (water channel, check dam) and analyzed the effect of reducing the debris flow shown in the downstream.After installing the erosion control facilities, most of debris flow moves along the water channel to reduce the area to expand the debris flow, and after installing the check dam, the flow depth and flux of the debris flow were reduced along with the erosion. However, as a result of analyzing the diffusion area, flow depth, erosion and deposition volume of the debris flow generated from the deposition part after modifying the location of the check dams with the damages occurring on private residences and agricultural land located on the upstream area, the highest reduction effect was shown when the check dam is installed in the maximal discharge points.

Development of a constant pressure feed system using a constant pressure proportional control mode (정압비례제어방식을 적용한 정압급수장치의 개발)

  • 김주명;김광열;이건기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.1026-1031
    • /
    • 2003
  • Automatic feed pumps are operated and stopped by a pressure switch. Thus, because of repeated operations and stops of the pumps according to fluctuations of water volume, operation with constant rate and pressure is impossible. Moreover, because of repeated running of the pump, keeping up of constant pressure is impossible and damage and energy loss are weak points of the pimps. To make up for defects of an automatic feed pump, this paper designed and made a static pressure feed system which was composed of a feed water control valve, a flow sensor and a control system. The valve device plays an important part in reducing load of pumps by constant water supply regardless of outflow of water. Outflow of water is determined by infrared diode of the flow sensor. The control system is made of a 8 bit micro-processor and the pump was controled by a specific control algorithm. With the constant pressure feed system, discharge pressure was kept at fixed pressure, accurate operations and stops were smoothly accomplished and the pump was operated with constant pressure. Thus, the constant pressure feed system can be considered as an advanced system which made up for the weak points in the current automatic feed systems.

Finite Element Analysis of Collapse of a Water Dam Using Filling Pattern Technique and Adaptive Grid Refinement of Triangular Elements (삼각형 요소의 형상 충전 및 격자 세분화를 이용한 붕괴하는 물 댐의 유한 요소 해석)

  • Kim, Ki-Don;Yang, Dong-Yol;Jeong, Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.395-405
    • /
    • 2004
  • The filling pattern and an adaptive grid refinement based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The mixed FE formulation and predictor-corrector method are used effectively for unsteady numerical simulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among four filling patterns at each triangular control volume. By adaptive grid refinement, the new flow field that renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. In this domain the elements in the surface region are made finer than those in the remaining regions for more efficient computation. Using the proposed numerical technique, the collapse of a water dam has been analyzed to predict flow phenomenon of fluid and the predicted front positions with respect to time have been compared with the reported experimental results.

A Study on the Characteristics of Two-Step-Flow-Control Fluidic Device (2단 유량제어 Fluidic Device의 특성에 관한 연구)

  • Cho, Bong-Hyun;Bae, Yoon-Yeong;Park, Jong-Kyun;Yoo, Seong-Yeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.3 s.12
    • /
    • pp.53-61
    • /
    • 2001
  • Vortex type Fluidic Device(FD) which is installed at the bottom of Safety Injection Tank(SIT) controls the discharge flow rate from the tank. In case of loss of coolant accident the injection water flows into primary system in two steps; initial high flow rate for certain period of time and subsequent low flow rate. By two-step control of the discharge flow rate, FD can ensure the effective use of water in the tank. A small-scale FD has been tested to obtain a required flow characteristics maintaining full pressure and height of prototype, which are the major contributing parameters. Through the testing of many different arrangements of internal geometry of FD, most appropriate one was selected and its performance data was obtained. As characteristics of FD, time dependent Euler number, flow rate and pressure are presented and discussed. Also a method to predict the full size FD is presented.

  • PDF

An Experimental Study on Control Performance of Radiant Floor Cooling Using Ondol (온돌을 이용한 바닥복사냉방의 제어성능에 관한 실험적 연구)

  • 김용이;임재한;한여명;김광우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1165-1173
    • /
    • 2001
  • The objectives of this study are to analyze the application of radiant floor cooling and to evaluate the control methods through experiments when the radiant heating system is used for cooling. Through the experiment analysis the control methods such as on/off control, variable flow control and outdoor reset with indoor temperature feedback control are evaluated and compared. The cooling curve (reset ratio) is found for radiant cooling, which shows tole relation between outside air temperature and supply water temperature. Comparison of cooling methods shows that outdoor reset with indoor temperature feedback control is more appropriate than on/off control and variable flow control with regard to prevention of the condensation and thermal comfort.

  • PDF

A study on estimating the quick return flow from irrigation canal of agricultural water using watershed model (유역모델을 이용한 농업용수 신속회귀수량 산정 연구)

  • Lee, Jiwan;Jung, Chunggil;Kim, Daye;Maeng, Seungjin;Jeong, Hyunsik;Jo, Youngsik;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.5
    • /
    • pp.321-331
    • /
    • 2022
  • In this study, we tried to present a method for calculating the amount of regression using a watershed modeling method that can simulate the hydrological mechanism of water balance analysis and agricultural water based on watershed unit. Using the soil water assessment tool (SWAT), a watershed water balance analysis was conducted considering the simulation of paddy fields for the Manbongcheon Standard Basin (97.34 km2), which is a representative agricultural area of the Yeongsan river basin. Before evaluating return flow, the SWAT was calibrated and validated using the daily streamflow observation data at Naju streamflow gauge station (NJ). The coefficient of determination (R2), Nash-Sutcliffe Efficiency (NSE), Root-Mean-Square Error (RMSE) of NJ were 0.73, 0.70, 0.64 mm/day. Based on the calibration results for three years (2015-2017), the quick return flow and the return rate compared to the water supply amount for the irrigation period (April 1 to September 30) were calculated, and the average return flow rate was 53.4%. The proposed method of this study may be used as foundation data to optimal agricultural water supply plan for rational watershed management.