• Title/Summary/Keyword: water flow control

Search Result 1,243, Processing Time 0.038 seconds

Temperature control for once through boiler (관류형 보일러의 온도제어)

  • 김은기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.900-904
    • /
    • 1991
  • It is important and difficult to control the steam temperature in the once through boiler. Generally, steam temperature of once through boiler not only is controlled by boiler spray water flow, but also is influenced by feed water flow and fuel flow. So we have to make the same gain of fuel flow controller and feed water flow controller. This paper is shown the design and test of steam temperature and feed water flow control system for once through boiler in pusan thermal power plant.

  • PDF

A Study on the Geothermal Heat Pump System Performance Analysis according to Water Flow Rate Control of the Geothermal Water Circulation Pump (지열순환펌프 유량변화에 따른 지열히트펌프시스템의 에너지 성능 평가)

  • Jung, Young-Ju;Jo, Jae-Hun;Kim, Yong-Shik;Cho, Young-Hum
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.103-109
    • /
    • 2014
  • It is important to control the amount of supply water flow rate at all kinds of HVAC systems in order to maintain IAQ and energy efficiency. The most of buildings installed geothermal heat pumps is using fixed water flow rate in spite of the excellent performance of geothermal heat pumps. Especially when the air-conditioning load is low, the flow rate control may be possible to save energy to operate. However, it is effective to apply the variable flow control system in order to reduce energy consumption. Therefore, the purpose of this study, change a water flow rate and improve the whole performance of the geothermal heat pump. Geothermal heat pump system is modeled after the selection of the applied building, by setting the flow rate control to be analyzed through a simulation of performance evaluation. Building energy saving according to the flow rate of the ground circulating water analyze quantitatively and to investigate the importance of the flow control.

An Introduction to Speed Control System of Small Steam Turbine for Feed Water Supply in Power Plant (발전소 급수펌프 구동용 소형 터빈 제어시스템 소개)

  • Choi, In-Kyu;Kim, Jong-An
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1603-1604
    • /
    • 2007
  • The load of power plants changes every from time to time according to which steam flow of boiler changes. the feed water control is very important for the power plant to be operated in its stability conditions. In case of circulation type boiler, the instability of feed water control leads to instability of drum level control. The higher level of drum water can induce bad quality steam to go into turbine which means the possibility of damage. The lower level of drum water can induce the tubes of boiler water wall to be overheated. In case of once through type boiler, the instability of feed water control leads to bad cooling of superheaters. The less the feed water flow is, the more heated the superheater is. It is necessary for the turbine driving feed water pump to be controlled for the optimal feed water flow in the large capacity power plant. The speed of turbine is controled for the feed water flow. By the way, the optimal control of steam valve is necessary for the speed control of turbine. Therefore, the various kinds of the steam valve structures are introduced in this paper

  • PDF

A Flow Quantity Distribution Characteristics of the Hot Water Header for Individual Room Control System (실별제어 온수분배기의 유량분배 특성)

  • Sung, Sun-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.3
    • /
    • pp.175-180
    • /
    • 2008
  • Flow quantity to supply to a coil in floor heating system is important to achieve comfortable indoor air condition in the winter season. The hot water header is used to distribute the water into the coil. Experimental study has been performed using the water header that have 5 branches consisted of flow control valves and automatic shut-off valves. Each branch line connected it with X-L pipe. Experimental tests accomplished it to investigate the flow distribution characteristics of the hot water header. Experimental results show that the selection of the pump head and differential pressure are very important to save running energy of the system, and high differential pressure needs more friction loss in the case of suitable differential pressure for balancing of the header.

A Study on the Operational Forecasting of the Nakdong River Flow with a Combined Watershed and Waterbody Model (실시간 낙동강 흐름 예측을 위한 유역 및 수체모델 결합 적용 연구)

  • Na, Eun Hye;Shin, Chang Min;Park, Lan Joo;Kim, Duck Gil;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.16-24
    • /
    • 2014
  • A combined watershed and receiving waterbody model was developed for operational water flow forecasting of the Nakdong river. The Hydrological Simulation Program Fortran (HSPF) was used for simulating the flow rates at major tributaries. To simulate the flow dynamics in the main stream, a three-dimensional hydrodynamic model, EFDC was used with the inputs derived from the HSPF simulation. The combined models were calibrated and verified using the data measured under different hydrometeological and hydraulic conditions. The model results were generally in good agreement with the field measurements in both calibration and verification. The 7-days forecasting performance of water flows in the Nakdong river was satisfying compared with model calibration results. The forecasting results suggested that the water flow forecasting errors were primarily attributed to the uncertainties of the models, numerical weather prediction, and water release at the hydraulic structures such as upstream dams and weirs. From the results, it is concluded that the combined watershed-waterbody model could successfully simulate the water flows in the Nakdong river. Also, it is suggested that integrating real-time data and information of dam/weir operation plans into model simulation would be essential to improve forecasting reliability.

Three-dimensional Numerical Modelling of Seawater Circulation of Semi-enclosed Bay with the Flow-control Structures

  • JONG-KYU KIM;TAE-SOON KANG;HEON-TAE KIM
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.35-42
    • /
    • 2001
  • The characteristics of tidal circulation with the flow-control structures using the three-dimensional numerical model (POM, Princeton Ocean Model) of Chinhae Bay, Korea were investigated. To confirm th efficiencies of flow-control structures, the training wall and submerged training wall were constructed at the mouth and narrow channel in Chinhae Bay. On the basis of the present investigation, the tidal circulation induced by the construction of flow-control structures could enhance the water exchange improvement appropriately. And, th training wall at the central is more dominated than the other structures for the efficient of water exchange. The sites and types of structure and flow patterns seem to be very sensitive in tidal simulation and changes in flow fields.

  • PDF

A Study on Improved Heating Performance of an Apartment Housing Unit (공동주택 세대별 난방 성능 개선 연구)

  • Seo, Jeong-Ah;Shin, Younggy;Kim, Yong-Ki;Lee, Tae-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.2
    • /
    • pp.69-74
    • /
    • 2016
  • Most hot water heating valves for apartments are constant-flow types, which limit the flow rate through an individual household for even distribution of heating water to other households. The constant-flow type is implemented by an on-off control. As a result, heating water is supplied intermittently and hence, indoor air temperature also fluctuates. Returning water temperature is also high, which reduces energy efficiency. To implement continuous feedback control, the indoor temperature dynamics was simulated to fit a measured temperature history by a state-of-the-art physical model. From the model, it was found that the most important disturbance is outdoor temperature and its effect on indoor temperature lasts about an hour. To cope with the slow response and the significant disturbance, a prediction control with proportional feedback is proposed. The control was found to be successful in implementing continuous heating water flow and improved indoor temperature control.

A Study on the Noise Reduction and Performance Improvement of the Hot Water Distributing System (시스템분배기 소음방지 및 성능개선방안 연구)

  • Kim, Yong-Ki;Lee, Tae-Won;Han, Tae-Su;Yoo, Sun-Hak
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1055-1060
    • /
    • 2009
  • Noise is one of the major environmental problems in human life. But hot water distributers with the flow rate control valve bring about often noise according to the heating control condition in residential buildings. The sound power level increased as the flow rate and pressure difference increased. And thus, experimental analyses for the flow rate control and the pressure difference control were carried out in this study to reduce the noise emitted from the flow rate control valve. As the results, the flow rate control method using a SMA(Shape Memory Alloy)-valve and the flow rate control system using a pressure difference sensor can be expected to control noise in the region of below 50 dB of sound power level.

  • PDF

Estimation of Instream Flow in Han River (한강에서의 하천유지유량 산정)

  • 오규창;정상만
    • Water for future
    • /
    • v.24 no.1
    • /
    • pp.119-128
    • /
    • 1991
  • This study was focused on establishing the concepts of the instream flow to prevent the problems for the conceptual ambiguity and the difference in the instream flow estimation methods. The average drought flow is defined as the flow required to guarantee the minimum function of the river such as prevention of drying. The environmental control flow is defined as the flow required to control optimal river environment, the flow required for navigation, prevention of sea water-intrusion, protection of river management facilities, conservation of water Quality, fishing, prevention of river mouth closure, control of groundwater level, protection of animals and plants, and landscape. The average drought flow was obtained by flow duration analysis for the natural flows in the Han River at Indo-Bridge gaging station. When considering the 9 factors related to environment conservation, the conservation of water quality was proved to be most important. The pollutants for the river flows were estimated and the water qualities were forecasted. After comparing the water qualities in the future and water quality standards, there quired optimal dilution flow was estimated. The average drought flow and environmental control flow are all non-consumptive flows. Therefore larger flow between them, i.e., Max. (average drought flow, environmental control flow) can be the instream flow. The river management flow can be added to the flows for water utilization in the downstream. The results from this study are expected to be very helpful in the systematic river management on the other main rivers in Korea.

  • PDF

Discharge Coefficients of Orifice Hole in the Cartridge of Constant Flow Control Valve (정유량 밸브의 카트리지의 오리피스 구멍의 유출계수)

  • Yoo, Seon-Hak;Kang, Seung-Duk;Yang, Eui-Seok;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.305-308
    • /
    • 2004
  • The constant flow control valve is used to control the flow rate of heating water in the large apartment complex and buildings. It is important to have similar heating flow rate in the apartments, even though the apartment is top or bottom floors. To achieve those purposes, the constant flow control valve was developed. The performance of this control valve is effected by hole area and discharge coefficients of the cartridge holes. The discharge coefficients of orifice hole in the cartridge were testes with various sizes of holes and various flow direction in the holes. The discharge coefficients decreased as the hole size increased due to the collision at the cartridge wall of water jet. The effects of the flow direction at the hole were not significant on the discharge coefficients.

  • PDF