• Title/Summary/Keyword: water evaluation

Search Result 7,104, Processing Time 0.031 seconds

Evaluation of impact of climate variability on water resources and yield capacity of selected reservoirs in the north central Nigeria

  • Salami, Adebayo Wahab;Ibrahim, Habibat;Sojobi, Adebayo Olatunbosun
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.290-297
    • /
    • 2015
  • This paper presents the evaluation of the impact of climate change on water resources and yield capacity of Asa and Kampe reservoirs. Trend analysis of mean temperature, runoff, rainfall and evapotranspiration was carried out using Mann Kendall and Sen's slope, while runoff was modeled as a function of temperature, rainfall and evapotranspiration using Artificial Neural Networks (ANN). Rainfall and runoff exhibited positive trends at the two dam sites and their upstream while forecasted ten-year runoff displayed increasing positive trend which indicates high reservoir inflow. The reservoir yield capacity estimated with the ANN forecasted runoff was higher by about 38% and 17% compared to that obtained with historical runoff at Asa and Kampe respectively. This is an indication that there is tendency for water resources of the reservoir to increase and thus more water will be available for water supply and irrigation to ensure food security.

Nutritional Flexibility of Oligotrophic and Copiotrophic Bacteria Isolated from Deionzed-ultrapure Water Made by High-purity Water Manufacturing System in A Semiconductor Manufacturing Company

  • Kim, In-Seop;Kim, Seung-Eun;Hwang, Jung-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.200-203
    • /
    • 1997
  • Bacteria isolated from ultrapure water made by a high-purity water manufacturing system in a semiconductor manufacturing plant were classified into two groups which either grew in diluted nutrient broth medium (oligotrophic bacteria) or could not grow (copiotrophic bacteria). The nutritional flexibility of oligotrophic and copiotrophic bacteria was investigated. The oligotrophic bacteria were shown to be able to utilize a significantly broader range of organic substrates than the copiotrophic bateria. This finding substantiates the hypothesis that nutritional flexibility is adaptive for oligotrophic bacteria.

  • PDF

A Study on Waterproofing and Anticorosive Performance Evaluation of Surface treatment material used wi th Glass Fiber, Inorganic and Organic Material for Water Tank (수조구조물의 방수.방식 공사용 유기.무기 소재 및 섬유보강형 바탕처리재의 성능평가에 관한 연구)

  • 오상근;박봉규;주웅일;박성진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.70-75
    • /
    • 2001
  • There is a problem to be solved for improvement of durability and safety for concrete When the waterproofing and anticorrosive work of main concrete are design, the material a of construction need to be correctly applied to appropriate circumstance conditions. Epoxy mostly been used for concrete water tank structure. Lately, lots of subjects on adaption res in mortar for waterproofing and anticorrosive are under discussion. Then, we attempt to approach by evaluating and comparing every capabilities with waterproofing materials in this experiment. Capability evaluation items include the bond age and curing conditions, the bond strength after accelerated weathering test and fret impact resistance, a mount of water, seepage quan Through the experiment analysis, we found that waterproofingtity, drinking water chemicals resistance. and anticorrosive resin mortar used with glass fiber cloth, inorgar material is dominantly superior to other waterproofing materials. According to this paper, we suggest the resin mortar as a new surface treatment material water tank structure.

  • PDF

Evaluation on Performance of Penetrative Water-repellent for Durability Progress of Concrete Structure (콘크리트 구조물의 내구성 증진을 위한 침투성 발수제의 성능평가)

  • Jang, Suk-Hwan;Woo, Jong-Tae;Nam, Yong-Hyuk;Kim, Seong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.289-296
    • /
    • 2003
  • The evaluation on performance of gel type penetrative water-repellent for durability progress of concrete structure has carried out in this study. And liquid type waterproof agents have been estimated with same method. Also normal concrete that was not applied water-repellent and waterproof agents have been estimated. As results, the penetrative depth of gel type water-repellent were deeper than that of liquid type waterproof agents and those were superior to these in physical and durable performance.

Physical Model Investigation of a Compact Waste Water Pumping Station

  • Kirst, Kilian;Hellmann, D.H.;Kothe, Bernd;Springer, Peer
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.285-291
    • /
    • 2010
  • To provide required flow rates of cooling or circulating water properly, approach flow conditions of vertical pump systems should be in compliance with state of the art acceptance criteria. The direct inflow should be vortex free, with low pre-rotation and symmetric velocity distribution. Physical model investigations are common practice and the best tool of prediction to evaluate, to optimize and to document flow conditions inside intake structures for vertical pumping systems. Optimization steps should be accomplished with respect to installation costs and complexity on site. The report shows evaluation of various approach flow conditions inside a compact waste water pumping station. The focus is on the occurrence of free surface vortices and the evaluation of air entrainment for various water level and flow rates. The presentation of the results includes the description of the investigated intake structure, occurring flow problems and final recommendations.

Effect of Evaluation before Site Application of Poly-acrylic Resin Leakage Repair Materials (폴리아크릴 레진 누수보수재의 선정평가 후 현장 적용에 따른 효과 분석)

  • Cho, Il-Kyu;An, Ki-Won;Song, Je-Young;Oh, Sang-Keun
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.55-61
    • /
    • 2018
  • This study improved the water repair materials of the polyacrylic system applied to concrete structures by controlling expansion, strengthening water resistance, and improving cohesiveness. The improved polyacrylate repair materials were evaluated against the existing products to verify their performance and level of improvement, and applied on-site to the concrete structures that are leaking the improved water. The verification method measured the presence of water leaks and the moisture content of concrete inside. Moisture levels were measured for two months before and after material installation, and at least 0.8 - 1.7% of humidity was reduced after installing polyacrylic resin, and no leakage was found.

Evaluation of Pressure Reducing Valves performance using Statistical Approach in Water Distribution System : Case Study (통계적 기법을 이용한 배·급수 관망 내 감압 밸브 성능 평가에 관한 사례 연구)

  • Park, No-Suk;Choi, Doo-Yong;Lee, Young-Joo;Yoon, Sukmin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.4
    • /
    • pp.519-531
    • /
    • 2015
  • It has been widely accepted that the pressure management of water distribution systems using pressure reducing valves(PRVs) would be an effective method for controlling leakages. A pressure reducing valve (PRV) regulates outlet pressure regardless of fluctuating flow and varying inlet pressure, thereby reducing leakage and mitigating the stress on the water distribution system. However, the operation of a PRV is vulnerable to its mechanical condition and hydraulic operability. In this research, the effect of PRVs installed in water distribution system are evaluated in terms of hydraulic pressure reduction and mechanical performance by analyzing measured pressure data with statistical approach. A statistical approach using the moving average filter and frequency analysis based on fourier transform is presented to detect abnormally operated PRVs that have been densely installed in water distribution system. The result shows that the proposed approach can be a good performance evaluation method by simply measuring pressures for the PRVs.

The design parameter evaluation of ion exchange process for ultra pure water production (초순수 생산을 위한 이온교환공정 설계특성 평가)

  • Park, Se-Chool;Kwon, Boung-Su;Lee, Kyung-Hyuk;Jung, Kwan-Sue
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.65-75
    • /
    • 2015
  • In this study, cation and anion exchange process for performance evaluation was conducted. A pilot plant for the ultrpure water production was installed with the capacity of $25m^3/d$. The various production rate and regeneration of ion exchange rate were tested to investigate the design parameters. The test resulst was applied to calculate the operating costs. Changing the flow rate of the ion exchange capacity of the reproduction reviewed the cation exchange process as opposed to the design value is 120 to 164% efficiency, whereas both anion exchange process is 82 to 124% efficiency, respectively. This results can be applied for more large scale plant if the scale up parameters are consdiered. The ion exchange capacity of the application in accordance with the design value characteristic upon application equipment is expected to be needed. In this study, the performance of cation and anion exchange resin process was evaluated with pilot plant($25m^3/d$). The ion exchange capacity along with space velocity and regeneration volume was evaluated. In results, the operation results was compared with design parameters.

Evaluation of the Level of Water Welfare in 24 Local Governments in Deagu·Gyeongsangbukdo using Statistical Yearbook (통계연보를 활용한 대구·경북지역 24개 지자체의 물복지 수준 평가)

  • Lee, Do Kyeong;Ahn, Seung Seop;Park, Ki bum
    • Journal of Environmental Science International
    • /
    • v.30 no.11
    • /
    • pp.937-944
    • /
    • 2021
  • In this study, water resource topics, infrastructure, water supply, users, and economic indicators based on statistical annual standards for evaluating water welfare were selected by examining domestic and foreign water resource-related indicators. The level of water welfare was evaluated relative to 23 cities and counties in Daegu and Gyeongsangbuk-do using data from the Statistical yearbook, and places with high value of indicators urbanization and large populations were excellent in the infrastructure field, but overall analysis showed that small and medium-sized cities had higher levels. It is judged that it is necessary to develop continuous research and indicators that can evaluate and quantify the level of physical welfare that the people can feel by utilizing the results of this study. In future studies, it is necessary to systematically evaluate the level of water welfare by local governments in Korea through more diverse evaluation items and detailed indicators for each item so that it can be used as basic data for realizing water welfare.

A two-step interval risk assessment method for water inrush during seaside tunnel excavation

  • Zhou, Binghua;Xue, Yiguo;Li, Zhiqiang;Gao, Haidong;Su, Maoxin;Qiu, Daohong;Kong, Fanmeng
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.573-584
    • /
    • 2022
  • Water inrush may occur during seaside urban tunnel excavation. Various factors affect the water inrush, and the water inrush mechanism is complex. In this study, nine evaluation indices having potential effects on water inrush were analysed. Specifically, the geographic and geomorphic conditions, unfavourable geology, distance from the tunnel to sea, strength of the surrounding rock, groundwater level, tidal action, cyclical footage, grouting pressure, and grouting reinforced region were analysed. Furthermore, a two-step interval risk assessment method for water inrush management during seaside urban tunnel excavation was developed by a multi-index system and interval risk assessment comprised of an interval analytic hierarchy process, fuzzy comprehensive evaluation, and relative superiority analysis. The novel assessment method was applied to the Haicang Tunnel successfully. A preliminary interval risk assessment method for water inrush was performed based on engineering geological conditions. As a result, the risk level fell into a risk level IV, which represents a section with high risk. Subsequently, a secondary interval risk assessment method was performed based on engineering geological conditions and construction conditions. The risk level of water inrush is reduced to a risk level II. The results agreed with the current tunnel situation, which verified the reliability of this approach.