• Title/Summary/Keyword: water depth change

Search Result 568, Processing Time 0.027 seconds

Study on the High Tension on Radiography and Density of Barium Sulphate (관전압(管電壓)과 황산(黃酸)바륨의 농도(濃度)에 관(關)한 연구(硏究))

  • Kyong, Kwang-Hyon;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.3 no.1
    • /
    • pp.43-48
    • /
    • 1980
  • An experimental study was carried out to make a comparison between tube voltage and density of barium sulphate in the stomach radiography. The results were summarized as follows: 1. The percentage of density on concentrations of barium sulphate as contrast media could not show in differences with changes of voltages applied X-ray tube. 2. The changes of density visualized on X-ray film mainly depend upon with thickness of stomach filled barium sulphate than the ratio of barium sulphite and plain water volume. 3. The lesions positioned in upper part within stomach exhibited their best discrimination performanance with depth in the low tube voltage, followed in order by the middle part and lower part. However, the discrimination performanance at the high tension radiography uniformly visualized over X-ray film without density in change.

  • PDF

Effects of Operation Parameters on Pollutants Removal in a Lab-Scale Multi-Layered Soil Filtration System (하천 수질정화를 위한 실험실 규모 다단식 토양여과 시스템에서 오염물질 제거에 미치는 운전인자의 영향)

  • Won, Se-Yeon;Ki, Dong-Won;Yoon, Min-Hyeok;Maeng, Sung-Kyu;Ahn, Kyu-Hong;Park, Joon-Hong;Song, Kyung-Guen
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.2
    • /
    • pp.91-96
    • /
    • 2012
  • In this study we investigated the effects of operational parameters of a multi-layered soil filtration (filter depth, filtration velocity, and continuous/intermittent operation) on removal of pollutants in river water. As filter depth increased removal of all the pollutants (COD, TP, TN, and $NH_4$-N) was increased because the increase in filter depth increased in contact time between media and pollutants. The removal of TP and $NH_4$-N more increased with the increase in filter depth, comparing to the biological COD removal which was performed only in the top layer, since the removal mechanism of TP and $NH_4$-N was physicochemical process occurring throughout the whole layers. However, the reduction in filtration velocity resulted in decrease of removal all the pollutants removal due to shorter retention time. Biological COD removal was more influenced with the reduction in filtration velocity (longer retention time), than the removal of TP and $NH_4$-N. Because biological process was occurred only in the top layer which has relatively shorter retention time, comparing with physicochemical process occurred throughout whole media. Therefore, it is desirable that the operation parameters be controlled toward increasing retention time, in order to achieve efficient pollutants removal. The change in operation mode (continuos vs. intermittent operations) did not provide significant effects on the pollutant treatment efficiency by the multi-layered soil filtration system. Our findings suggest that for stable long-term operation it should be considered keeping conditions for biological activity and accelerating clogging.

Hydrographic Structure Along $131.5^{\circ}W$ in the Northeastern Pacific in July-August 2005 (2005년 7-8월에 관측한 북동태평양 $131.5^{\circ}W$의 해수특성 및 해양구조)

  • Shin, Hong-Ryeol;Hwang, Sang-Chul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.190-199
    • /
    • 2008
  • To investigate hydrographic structure and characteristics of the tropical ocean in the eastern and the western Pacific, CTD(Conductivity-Temperature-Depth) data along $131^{\circ}W$ and $137^{\circ}-142^{\circ}E$ in July-August 2005 were analyzed. Sea surface temperature along $131.5^{\circ}W$ in summer is highest in the Equatorial Counter Current(ECC) because of the high-temperature water greater than $28^{\circ}C$ moving through the ECC from the western Pacific to the eastern Pacific in spring and summer. Based on the evidence of the presence of low salinity and high dissolved oxygen water in the North Equatorial Current(NEC), we suggested that the low salinity water moved from the Gulf of Panama to the east of Philippine along the North Equatorial Current(NEC). The South Equatorial Current(SEC) had the most saline water from surface to deep layer because the saline water from the Subtropical South Pacific Ocean moved to the north. The salinity minimum layer was observed at 500-1500 m depth along $131.5^{\circ}W$. The water mass with the salinity minimum layer in the north of $5^{\circ}N$ came from the North Pacific Intermediate Water(NPIW) and that in the south of $5^{\circ}N$ came from the Antarctic Intermediate Water(AAIW), which was more saline than the NPIW. Cyclonic cold eddy with a diameter of about 200km was found in $4-6^{\circ}N$. Sea surface temperature along $131.5^{\circ}W$ in the eastern Pacific was lower than along $137^{\circ}-142^{\circ}E$ in the western Pacific; on the other hand, sea surface salinity in the eastern Pacific was higher than in the western Pacific. Subsurface saline water from the Subtropical South Pacific Ocean was less saline in the eastern Pacific than in the western Pacific. Salinity and density(${\sigma}_{\theta}$) of the salinity minimum layer south of $14^{\circ}N$ was higher in the eastern Pacific than in the western Pacific.

Water Level and Quality Variations of CO2-rich Groundwater and Its Surrounding Geology in the Chungju Angseong Spa Area, South Korea: Considerations on Its Sustainability (충주 앙성지역 탄산천의 수위/수질 변동과 주변 지질 특성: 탄산천의 지속가능성에 대한 고찰)

  • Moon, Sang-Ho;Kee, Weon-Seo;Ko, Kyung-Seok;Lee, Cholwoo;Choi, Hanna;Koh, Dong-Chan
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.477-495
    • /
    • 2022
  • This study examined the sustainability of CO2-rich water by analyzing the water level and water quality change pattern with the amount of its use in Angseong area, Chungju. The origin and supply of CO2 component were discussed in consideration of 87Sr/86Sr ratio, occurrence of CO2-rich fluid inclusions in nearby W-Mo deposits and other surrounding geological characteristics. According to the data from 1986 to 2017, the depth of the water level of CO2-rich water was significantly lowered in the late period (2009-2015) than in the early period (1986-1992) of the development of hot spa wells, and the optimal yields for pumping tests also showed a tendency to gradual decrease. Concentrations of CO2 component also decreased continuously in the later stages compared to the early stages of development, but it has been stable since 2012. It is inferred that the geological environment related to forming W-Mo quartz vein deposits (0.5×1.5×several km) around the study area are largely involved in the origin and supply of CO2 component, and the supply of CO2 component is not infinitely supplied from deep current magma activity. Rather, since it is finitely supplied from a restricted subsurface region formed in the past geological period, it is necessary to efficiently control its use in order to maintain the sustainability of CO2-rich water in the study area.

Characteristics of Water Surface Variations around 3-Dimensional Permeable Submerged Breakwaters under the Conditions of Salient Formation (설상사주 형성조건하에 있는 3차원투과성잠제 주변에서 수면변동의 특성)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;An, Sung-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.335-349
    • /
    • 2017
  • Submerged breakwaters installed under the water surface are a representative coastal structure to prevent coastal erosion, and various types of submerged breakwaters have been proposed and discussed so far. Generally, submerged breakwaters make the complex wave fields due to abrupt change in water depth at the crown of the breakwater. In this study, wave heights and mean water level formed around a breakwater are examined numerically for three-dimensional permeable submerged breakwaters. OLAFOAM, CFD open source code, is applied in the numerical analysis, and the comparisons are made with available experimental results on the permeable upright wall and the impermeable submerged breakwater to verify its applicability to the three-dimensional numerical analysis. Based on the applicability of OLAFOAM numerical code, the wave height and mean water level distribution formed around the permeable submerged breakwaters are investigated under the formation condition of salient. The numerical results show that as the gap width between breakwaters decreases, the wave height in the center of the gap increases, while it decreases behind the gap, and the installing position of the breakwater from the shoreline has little influence on the change of the wave height. Furthermore, it is found that the decrease of the mean water level near the gap between breakwaters increases with decreasing of the gap width.

Assessment on Flood Characteristics Changes Using Multi-GCMs Climate Scenario (Multi-GCMs의 기후시나리오를 이용한 홍수특성변화 평가)

  • Son, Kyung-Hwan;Lee, Byong-Ju;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.9
    • /
    • pp.789-799
    • /
    • 2010
  • The objective of this study is to suggest an approach for estimating probability rainfall using climate scenario data based GCM and to analyze changes of flood characteristics like probability rainfall, flood quantile and flood water level under climate change. The study area is Namhan river basin. Probability rainfalls which is taken 1440 minutes duration and 100-year frequency are estimated by using IPCC SRES A2 climate change scenario for each time period (S0: 1971~2000; S1: 2011~2040; S2: 2041~2070; S3: 2071~2100). Flood quantiles are estimated for 17 subbasins and flood water level is analyzed in the main channel from the downstream of Chungju dam to the upstream of Paldang dam. Probability rainfalls, peak flow from flood quantile and water depth from flood water level have increase rate in the range of 13.0~15.1 % based S0 (142.1 mm), 29.1~33.5% based S0 ($20,708\;m^3/s$), 12.6~13.6% in each S1, S2 and S3 period, respectively.

A study of the simulation of thermal distribution in an aquifer thermal energy storage utilization model (대수층 축열 에너지 활용 모델의 온도 분포 시뮬레이션 연구)

  • Shim, Byoung-Ohan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.697-700
    • /
    • 2005
  • Aquifer Thermal Energy Storage (ATES) system can be very cost-effective and renewable energy sources, depending on site-specific parameters and load characteristics. In order to develop an ATES system which has certain hydrogeological characteristics, understanding of the thermo hydraulic processes of an aquifer is necessary for a proper design of an aquifer heat storage system under given conditions. The thermo hydraulic transfer for heat storage is simulated using FEFLOW according to two sets of pumping and waste water reinjection scenarios of heat pump operation in a two layered confined aquifer. In the first set of model, the movement of the thermal front and groundwater level are simulated by changing the locations of injection and pumping well in seasonal cycle. However, in the second set of model the simulation is performed in the state of fixing the locations of pumping and injection well. After 365 days simulation period, the temperature distribution is dominated by injected water temperature and the distance from injection well. The small temperature change is appears on the surface compared to other slices of depth because the first layer has very low porosity and the transfer of thermal energy are sensitive at the porosity of each layer. The groundwater levels and temperature changes in injection and pumping wells are monitored to validate the effectiveness of the used heat pump operation method and the thermal interference between wells is analyzed.

  • PDF

Analysis of temperature monitoring data for leakage detection of earth dam (흙댐의 누수구역 판별을 위한 온도 모니터링 자료의 해석)

  • Oh, Seok-Hoon;Seo, Baek-Soo
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.39-45
    • /
    • 2008
  • Temperature variation according to space and time on the inner parts of engineering constructions(e.g.: dam, slope) can be a basic information for diagnosing their safety problem. In general, as constructions become superannuated, structural deformation(e.g.: cracks, defects) could be occurred by various factors. Seepage or leakage of water through these cracks or defects in old dams will directly cause temperature anomaly. Groundwater level also can be easily observed by abrupt change of temperature on the level. This study shows that the position of seepage or leakage in dam body can be detected by multi-channel temperature monitoring using thermal line sensor. For this, diverse temperature monitoring experiments for a leakage physical model were performed in the laboratory. In field application of an old earth fill dam, temperature variations for water depth and for inner parts of boreholes located at downstream slope were measured. Temperature monitoring results for a long time at the bottom of downstream slope of the dam showed the possibility that temperature monitoring can provide the synthetic information about flowing path and quantity of seepage of leakage in dam body.

  • PDF

A column study of effect of filter media on the performance of sand filter

  • Kim, Tae-hoon;Oh, Heekyong;Eom, Jungyeol;Park, ChulHwi
    • Membrane and Water Treatment
    • /
    • v.11 no.4
    • /
    • pp.247-255
    • /
    • 2020
  • Sand filter is a key unit process for particle removal in water purification treatments. Its long-standing use is due to on-site customized retrofit. Proper selection of filter media is one of the retrofit approaches to improve filter performance. This study described a series of controlled laboratory column tests and examined the effects of media property on filtration and backwash. When sand media of 0.51 mm in effective size was replaced by sand of 0.60 mm, the filter run increased up to 5 times in the given bed depth. The change of media property required an increase of backwash rate by 0.05 m/min to satisfy the requirement of bed expansion, more than 20%. When the anthracite was changed with lower effective size and uniformity coefficient, correlation with sand in the filter bed could be satisfied within the permissible error between media and bulk characteristics. Besides, this selection resulted in a well-stratified configuration of media layers after bed expansion. The column study showed that the correlation of property between the dual media had a significant effect on the filter productivity and backwash interval.

Machining Performance of Optical Glass with Magnetorheological Fluid Jet Polishing (MR 유체 제트 연마를 이용한 광학유리의 가공성능)

  • Kim, Won-Woo;Kim, Wook-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.929-935
    • /
    • 2011
  • As a deterministic finishing process for the optical parts having complex surface, machining performance of the magnetorheological(MR) fluid jet polishing of optical glass are studied and compared with a general water jet polishing. First, design of the jet polishing system which has the special electromagnet-nozzle unit for stabilizing the slurry jet based on MR fluid and the change of jet shape as magnetic field is applied are explained. Second, for the BK7 glass, machining spot and its cross section profile are analyzed and the unique effect of MR fluid jet polishing is shown. Third, both material removal depth and surface roughness are explored in order to investigate the polishing performance of MR fluid jet. With the same ceria abrasives and amount in the polishing slurries, MR fluid jet shows superior machining performance compared to water jet and the difference of material removal mechanism and its resulting performance are described.