• Title/Summary/Keyword: water curtain cultivation

Search Result 24, Processing Time 0.029 seconds

Analysis of Groundwater Conductivity and Water Temperature Changes in Greenhouse Complex by Water Curtain Cultivation (수막용수 사용으로 인한 시설재배지역의 지하수 수온과 전기전도도 변화 특성 분석)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.93-103
    • /
    • 2023
  • This study aimed to analyze the impact of water curtain cultivation in the greenhouse complexes on groundwater's electric conductivity and water temperature. The greenhouse complexes are mainly situated along rivers to secure water resources for water curtain cultivation. We classified the groundwater monitoring well into the greenhouse (riverside) and field cultivation areas (plain) to compare the groundwater impact of water curtain cultivation in the greenhouse complex. The groundwater observation network in Miryang, Gyeongsangnam-do, located downstream of the Nakdong River, was selected for the study area. As a result of analyzing the electric conductivity and water temperature, the following differences were found in the observed characteristics by region. 1) The electric conductivity and water temperature of the riverside area, where the permeability is high and close to rivers, showed a constant pattern of annual changes due to the influence of river flow and precipitation. 2) The flat land in general agricultural areas showed general characteristics of bedrock observation in the case of water temperature. Still, it seemed more affected by the surrounding well's water use and water quality. The electric conductivity did not show any particular trend and was influenced by the surrounding environment according to the location of each point.

Time-series Analysis and Prediction of Future Trends of Groundwater Level in Water Curtain Cultivation Areas Using the ARIMA Model (ARIMA 모델을 이용한 수막재배지역 지하수위 시계열 분석 및 미래추세 예측)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.2
    • /
    • pp.1-11
    • /
    • 2023
  • This study analyzed the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes. The groundwater observation data in the Miryang study area were used and classified into greenhouse and field cultivation areas to compare the groundwater impact of water curtain cultivation in the greenhouse complex. We identified the characteristics of the groundwater time series data by the terrain of the study area and selected the optimal model through time series analysis. We analyzed the time series data for each terrain's two representative groundwater observation wells. The Seasonal ARIMA model was chosen as the optimal model for riverside well, and for plain and mountain well, the ARIMA model and Seasonal ARIMA model were selected as the optimal model. A suitable prediction model is not limited to one model due to a change in a groundwater level fluctuation pattern caused by a surrounding environment change but may change over time. Therefore, it is necessary to periodically check and revise the optimal model rather than continuously applying one selected ARIMA model. Groundwater forecasting results through time series analysis can be used for sustainable groundwater resource management.

Analysis of Groundwater Level Changes Near the Greenhouse Complex Area Using Groundwater Monitoring Network (지하수관측망을 이용한 강변 시설재배지역 지하수위 변화 특성 분석)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.13-23
    • /
    • 2022
  • The purpose of this study was to analyze the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes, which are mainly situated along rivers where water resources are easy to secure. The groundwater observation network in Miryang, Gyeongsangnam-do, located downstream of the Nakdong River, was selected for the study area. We classified the groundwater monitoring well into the greenhouse (riverside) and field cultivation areas (plain and mountain) to compare the groundwater impact of water curtain cultivation in the greenhouse complex. The characteristics of groundwater level changes classified by terrain type were analyzed using the observed data. Riverside wells have significant permeability coefficients and are close to rivers, so they are greatly affected by river flow and precipitation changes so that water level shows a specific pattern of annual changes. Most plain wells do not show a constant annual change, but observation wells near small rivers and small-scale greenhouse cultivation areas sometimes show annual and daily changes in which the water level drops during winter. Compared to other observation wells, mountain wells do not show significant yearly changes in water level and show general characteristics of bedrock aquifer well with a low permeability coefficient.

A Study on How to Reduce the Amount of Groundwater Used in the Dry Season and Improve the Water Quality of the Base Runoff (갈수기 지하수 물 사용량 저감 및 기저유출 수질 개선 방안 연구)

  • Kang, Tae-Seong;Yang, Dong-Seok;Yu, Na-Yeong;Shin, Min-Hwan;Lim, Kyoung-Jae;Kim, Jong-Gun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.2
    • /
    • pp.27-35
    • /
    • 2022
  • Based on the current status of groundwater usage in the dry season through field surveys, this study tried to suggest countermeasures to reduce groundwater usage and to improve the water quality of baseflow from agricultural fields. For this purposes, basins with water curtain cultivation preceded were targeted where decreases of groundwater due to continuous use of groundwater in spring and winter annually observed. From monitoring groudwater usage of the study watershed, 130,058, 130,105 m3/day of water was pumped in during the water curtain cultivation period (October-February) in the Shindun, Seokwon watershed respectively. And the pilot application of the smart automated sensor-based water curtain cultivation system (smart WC system) developed in this study to reduce groundwater consumption has been conducted. As a result, the efficiency of the smart WC system when threshold temperature is set as 6.3 ℃ was 21.1% compared to conventional cultivation and efficiency increased as threshold temperature gets lower. Lastly, in this study, culvert drainage and Bio-filters were installed and rainfall monitoring was performed 15 times in order to analyze the baseflow securement and pollutant loads behavior. As a result, the test-bed with culvert drainage and Bio-filter installed together generated 61.4% more baseflow (4.974 m3) than the test-bed with only culvert drainage was installed (3.056 m3). However, the total pollutant load of all water quality contents (BOD, COD, T-N, TOC) except for the SS and T-P was found to be greater in the culvert drain and Bio-filter installed than in the culvert drain test-bed.

An Analysis of Groudwater Budget in a Water Curtain Cultivation Site (청원 수막재배 지역의 물수지 특성 분석)

  • Chang, Sun Woo;Chung, Il-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1259-1267
    • /
    • 2015
  • In Korea, rural groundwater development faces new challenge, which have not been experienced so far. The problem is a groundwater depletion by the water curtain cultivation (WCC) during winter season. This study investigates the groundwater depletion using three-dimensional finite difference groundwater flow program, MODFLOW to verify the water budget of the shallow aquifer of Cheongweon area. Interdisciplinary research, which has become a worldwide trend, has been adopted in studying groundwater modeling in field scale. In particular, the method of groundwater recharge estimation adopted precise modeling techniques, SWAT to groundwater flow modeling. Based on qualified field data, the model calibrated and validated its reliability. The objective of this study is to simulate various stream-aquifer interactions according to groundwater pumping with artificial boundaries, such as weirs and drainage system. We also analyzed a seasonal variation of cumulative water budget of the site to quantify the groundwater depletion and recovery in the pumping field.

Analysis and evaluation of hydrological components in a water curtain cultivation site (수막재배지역의 수문성분 해석 및 평가)

  • Chung, Il-Moon;Chang, Sun Woo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.731-740
    • /
    • 2016
  • This study conducts the hydrological component analysis from 2010 to 2015 at the water curtain cultivation area in Cheongwon-gu, Cheongju-si and investigates the monthly based groundwater recharge variation. It is found that the rates of evaportranspiration, surface runoff and groundwater recharge were varied according to the total annual precipitation and their correlations were also changed annually. Annual recharge rates for annual precipitation ranged from 8.3% to 19%, and their coefficient of determination ranged from 0.39 to 0.94. Especially in 2015, when the severe drought came upon this area, the lack of groundwater recharge made groundwater level decrease consistently. Thus, it is thought that the special method of estimating exploitable groundwater in water curtain cultivation site is to be introduced.

O/H Stable Isotopic Composition and Groundwater-surface Water Connectivity: A Case Study for Wangjeon-ri Water Curtain Cultivation Area, Nonsan, Korea (산소/수소안정동위원소를이용한지하수-지표수연계성연구: 논산시왕전리수막 재배지역 사례)

  • Moon, Sang-Ho
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.567-577
    • /
    • 2018
  • One of problems related with water curtain cultivation (WCC) in Korea includes severe declination of groundwater levels during the peak season, and it is likely that the problem can be resolved efficiently when the connection characteristics between groundwater and stream are well understood. This study examined temperature, and oxygen/hydrogen stable isotopic compositions of the flowing groundwater to understand the connection between stream and ground water, and the influence of stream water on the nearby aquifer. This study was performed in Wangjeon-ri (Kwangseok-myon, Nonsan City), the well-known strawberry town using WCC technique. The sampling was done during February 2010 through June 2011 for both groundwaters and nearby streams. Temperature distribution pattern indicates that stream widely affected groundwater in the right part of WCC ara. In the left part, the influence of stream seems to occur narrowly near the stream. The similar phenomenon is reflected in the oxygen and hydrogen isotopic data.

Analysis of Temperature Changes in Greenhouses with Recirculated Water Curtain System (순환식 수막하우스의 수온에 따른 플라스틱 온실 내 온도변화 분석)

  • Kim, Hyung-Kweon;Jeon, Jong-Gil;Paek, Yee;Pyo, Hee-Young;Jeong, Jae-Woan;Kim, Yong-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.93-99
    • /
    • 2015
  • The purpose of this study was to determine the appropriate temperature for water curtain in greenhouses equipped with recirculated water curtain system. The study analyzed the changes in air temperature in non-heated greenhouses for strawberry cultivation based on outdoor temperature, water curtain temperature and night time. Three greenhouse units were used for this study: The first unit was assigned as a control (no water curtain system), two other greenhouses were equipped with recirculated water curtain system with water curtain temperatures of $10^{\circ}C$ and $15^{\circ}C$, respectively. Analysis showed that the indoor temperatures were directly correlated with the outdoor temperature in all experimental greenhouses. Heat insulating effect of $15^{\circ}C$ water curtain was increased by $1.3^{\circ}C$ compared to that in $10^{\circ}C$ water curtain system. The $15^{\circ}C$ water curtain treatment showed the highest average temperature and less temperature variation in comparison with control and $10^{\circ}C$ water curtain treatment. To maintain indoor temperature at $5^{\circ}C$, water curtain temperature of $10^{\circ}C$ was suitable when outdoor minimum and average temperatures were -1.3 and $1.5^{\circ}C$, and water curtain temperature of $15^{\circ}C$ was suitable when outdoor minimum and average temperatures were -4.7 and $-0.2^{\circ}C$, respectively. The highest temperature in greenhouses according to measurements in different periods of night time was observed after sunset (18:30-20:30), and the lowest temperature before sunrise (05:00-07:00). Water curtain maintained a target indoor temperature by acting as a layer of heat transfer insulator which decreased heat loss from greenhouses. Therefore, water temperature in recirculating water curtain systems should be determined by considering outdoor temperatures, changes in temperature at different periods of night time, and cultivated crop.

Analysis of Groundwater Variations using the Relationship Between Groundwater use and Daily Minimum Temperature in a Water Curtain Cultivation Site (수막재배지역에서 일최저기온과 지하수 이용량의 상관관계를 이용한 지하수위 변화 분석)

  • Chang, Sunwoo;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.217-225
    • /
    • 2014
  • Water curtain cultivation (WCC) systems in Korea have depleted water resources in shallow aquifers through massive pumping of groundwater. The goal of this study is to simulate the groundwater variations observed from massive groundwater pumping at a site in Cheongweon. MODFLOW was used to simulate three-dimensional regional groundwater flow, and the SWAT (Soil and Water Assessment Tool) watershed hydrologic model was employed to introduce temporal changes in groundwater recharge into the MODFLOW model input. Additionally, the estimation method for groundwater discharge in WCC areas (Moon et al., 2012) was incorporated into a groundwater pumping schedule as a MODFLOW input. We compared simulated data and field measurements to determine the degree to which winter season groundwater drawdown is effectively modeled. A simulation time of 107 days was selected to match the observed groundwater drawdown from November, 2012 to March, 2013. We obtained good agreement between the simulated drawdown and observed groundwater levels. Thus, the estimation method using daily minimum temperatures, may be applicable to other cultivation areas and can serve as a guideline in simulating the regional flow of riverside groundwater aquifers.