• Title/Summary/Keyword: water corrosion

Search Result 1,466, Processing Time 0.025 seconds

Improvement of Corrosion Resistance for Copper Tube by Electrochemical Passivation (전기화학적 부동태화에 의한 동관의 내식성 개선 연구)

  • Min, Sung-Ki;Kim, Kyung-Tae;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.125-130
    • /
    • 2011
  • This study was performed to improve the corrosion resistance and the stability of passive film on copper tube by potentiostatic polarization method in synthetic tap water. Formation of passive film was carried out by anodic potentiostatic polarization at various passivation potentials and passivation times in 0.1 M NaOH solution. Stability of passive film and corrosion resistance was evaluated by self-activation time, ${\tau}_0$ from passive state to active state on open-circuit state in 0.1 M NaOH solution. Addition of polyphosphate in NaOH solution prolonged the self-activation time and improved the corrosion resistance, and the addition of 5 ppm polyphosphate was most effective. It was also observed that better corrosion resistance was obtained by potentiostatic polarization at 1.0 V (vs. SCE) than at any other passivation potentials. Passivated copper tube showed perfect corrosion resistance for the immersion test in synthetic tap water showing that the anodic potentiostatic polarization treatment in 0.1 M NaOH with 5 ppm polyphosphate solution would be effective in improving the corrosion resistance and preventing the blue water problem.

Corrosion on Steel Surfaces with Sea-Salt Deposition and Artificial Seawater Film

  • Katayama, Hideki;Yamamoto, Masahiro;Kodama, Toshiaki;Nagasawa, Makoto;Itagaki, Masayuki;Watanabe, Kunihiro
    • Corrosion Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.47-53
    • /
    • 2004
  • The conditions to simulate the atmospheric corrosion behavior in the laboratory were investigated to clarify atmospheric corrosion mechanism of steel material in coastal area, For airborne sea salt and artificial seawater droplet, the various behaviors were observed by optical microscope, The particle size of the dried airborne sea salt was about $20{\mu}m$, and was about 1/10 compared with the artificial seawater droplet. Though the airborne sea salt represented the same behavior as the thermodynamic water absorption, the behavior of the artificial seawater droplet deviated from the results of the thermodynamic calculation, It is concluded that the water absorption behavior is influenced by the particle size of the dried sea salt. The corrosion behaviors of carbon steels were observed under the deposited condition of airborne sea salt and artificial seawater droplet. The corrosion behaviors showed a different trend, indicating that the corrosion behavior depended on the particle size of the dried sea salt. The corrosion in the actual environrnent progressed greater than that in the chamber. Furthermore, the summer showed the greater corrosion than the spring. It is found that the corrosion behaviors are attributed to the influence of the environmental factors.

C-Ring Stress Corrosion Test for Inconel 600 Tube and Inconel 690 welded by Nd:YAG Laser (Nd:YAG 레이저로 용접한 인코넬 600관과 인코넬 690의 C링 응력 부식시험)

  • 김재도;문주홍;정진만;김철중
    • Proceedings of the KWS Conference
    • /
    • 1998.10a
    • /
    • pp.288-291
    • /
    • 1998
  • Inconel 600 alloy is used as the material of nuclear steam generator tubing because of its mechanical properties, formability, and corrosion properties. According to reports, the life time of nuclear power plants decreases because of the pitting, intergranular attack, primary water stress corrosion cracking(PWSCC), and intergranular stress corrosion cracking(IGSCC), and denting in the steam generator. The SCC test is very important because of SCC appears in various environment such as solutions, materials, and stress. The C-Rig specimen was made of the steam generator welded sleeve repairing by the pulsed Nd:YAG laser. In the corrosion invironment, corrosion solutions are Primary Water, Caustic, and Sulfate solution and corrosion time is 1624-4877hr. The permitted stress is 30-60ksi.In this C-Ring SCC test is the relationship between corrosion depth, crack and corrosion environment is evaluated. SCC was happens in Sulfate and Corrosion solution but doesn't happen in Primary Water. The corrosion time and stress is very affected by the severely environment of Sulfate or Caustic solution. The microstructure observation indicates that SCC causes interganular failure in the grain boundary of vertical direction.

  • PDF

Effect of Phosphate-based Inhibitors on Pipe Corrosion of Drinking Water Supply (상수도 배급수관망의 부식방지를 위한 인산염계 방청제 적용에 관한 연구)

  • 이윤진;남상호
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.3
    • /
    • pp.65-71
    • /
    • 2003
  • The injection concentration of corrosion inhibitor increases under the pH 7, temperature of 2$0^{\circ}C$, and alkalinity of 35 mg/l (as CaCO$_3$), the corrosion rate gradually decreased. When the corrosion inhibitor of 10 mg/l is injected, the corrosion rate for carbon steel pipe, galvanized steel pipe, and copper pipe reduces for 37, 66 and 61 % respectively that it is more efficient on galvanized steel pipe and copper pipe. As a result of examination of corrosion rate at pH 6, 7, and 8 when injecting 10 mg/l of corrosion inhibitor under the conditions of 2$0^{\circ}C$ in water temperature and 35 mg/l (as CaCO$_3$) in alkalinity, the efficiency of the corrosion inhibitor increases as the pH increases. For carbon steel pipe, it does not show much a difference with the change of the pH condition, but galvanized steel pipe and copper pipe clearly show the corrosion rate depending on the change of the pH condition. The efficiency of corrosion inhibitor is low as the concentration of residual chlorine is high, but it does not show a great influence at 0.4 mg/l or less. For each pipe type, in the case of carbon steel pipe, the range of increase of corrosion speed following the residual chloride is higher than the other pipe types. In the meantime, the effect following the residual chlorine in copper pipe is low.

Effect of Water Chemistry Factors on Flow Accelerated Corrosion : pH, DO, Hydrazine (유동가속부식에 영향을 미치는 수화학 인자 : pH, 용존산소, 하이드라진)

  • Lee, Eun Hee;Kim, Kyung Mo;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.280-287
    • /
    • 2013
  • Flow accelerated corrosion(FAC) of the carbon steel piping in pressurized water reactors(PWRs) has been major issue in nuclear industry. Severe accident at Surry Unit 2 in 1986 initiated the worldwide interest in this area. Major parameters influencing FAC are material composition, microstructure, water chemistry, and hydrodynamics. Qualitative behaviors of FAC have been well understood but quantitative data about FAC have not been published for proprietary reason. In order to minimize the FAC in PWRs, the optimal method is to control water chemistry factors. Chemistry factors influencing FAC such as pH, corrosion potential, and hydrazine contents were reviewed in this paper. FAC rate decreased with pH up to 10 because magnetite solubility decreased with pH. Corrosion potential is generally controlled dissolved oxygen (DO) and hydrazine in secondary water. DO increased corrosion potential. FAC rate decreased with DO by stabilizing magnetite at low DO concentration or by formation of hematite at high DO concentration. Even though hydrazine is generally used to remove DO, hydrazine itself thermally decomposed to ammonia, nitrogen, and hydrogen raising pH. Hydrazine could react with iron and increased FAC rate. Effect of hydrazine on FAC is rather complex and should be careful in FAC analysis. FAC could be managed by adequate combination of pH, corrosion potential, and hydrazine.

Characteristics of Corrosion and Water Quality in Simulated Reclaimed Water Distribution Pipelines (모형 재이용관을 이용한 하수재이용수의 부식 및 수질영향 연구)

  • Kang, Sung-Won;Lee, Jai-Young;Lee, Hyun-Dong;Kim, Gi-Eun;Kwak, Pill-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.7
    • /
    • pp.473-479
    • /
    • 2012
  • Water reuse has been highlighted as a representative alternative to solve the lacking water resource. This study carried out a study on the pipe corrosion and water quality change which can occur through the supply of reclaimed water, using a simulated reclaimed water distribution pipeline. Galvanized steel pipe (GSP), cast iron pipe (CIP), stainless steel pipe (STSP) and PVC pipe (PVCP) were used for the pipe materials. Reclaimed water(RW) and tap water(TW) were respectively supplied into simulated reclaimed water distribution pipelines. As a result of performing a loop test to supply reclaimed water to simulated reclaimed water distribution pipelines, the weight reduction of pipe coupons showed the sequence of CIP > GSP > STSP ${\approx}$ PVCP. In addition, reclaimed water showed a high corrosion rate comparing to that of tap water. In case of CIP, the initial corrosion rate showed 3.511 mdd(milligrams per square decimeter per day) for reclaimed water and 2.064 mdd for tap water and the corrosion rate for 90 days showed 0.833 mdd for reclaimed water and 0.294 mdd for tap water. Also in case of GSP, the initial corrosion rate showed 2.703 mdd for reclaimed water and 2.499 mdd for tap water and the corrosion rate for 90 days showed 0.349 mdd for reclaimed water and 0.248 mdd for tap water, which was a tendency similar to that appeared in CIP with a tendency to reduce the corrosion rate. As a result of water quality changes of reclaimed water at pipe materials to carry out the loop test, there was higher conversion ratio of ammonia into nitrate in CIP and GSP with higher corrosion rate than that in STSP and PVCP where no corrosion has occurred. The highest denitrification rate of nitrate could be observed from CIP with the most particles generated from corrosion. In CIP, it could be confirmed that there was MIC (Microbiologically Induced Corrosion) as a result of EDS (Energy Dispersive X-ray spectrometer System) analysis results.

Corrosive Wear of Alloy 690 Tubes in Alkaline Water

  • Hong, Seung Mo;Jang, Changheui;Kim, In Sup
    • Corrosion Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.126-131
    • /
    • 2009
  • The interaction between wear and corrosion can significantly increase total material losses in water chemistry environment. The corrosive wear tests of a PWR steam generator tube material (Alloy 690) against the anti vibration bar material (409 SS) were performed at room temperature. The tests were performed in alkaline water chemistry conditions. NaOH solution was selected for test condition to investigate the corrosive wear effect of steam generator tube material in alkaline pH condition without other factors. The flow induced vibration can caused tube damage and the corrosion can be occurred by water chemistry. The test results showed that, in the alkaline solution at pH 13.9, the corrosion current density was increased about ten times than that in the distilled water. And wear rate at pH 13.9 was increased about ten times from that at neutral condition. However, the wear rate was decreased with time. The decrease would be attributed to the change in roughness of specimen or sub-layer of the worn surface with time. From microstructure observation, severe abrasive shape and several wear debris were found. From those results, it could infer that the oxide film on Alloy 690 changed to easily breakable one in the alkaline water, and then abrasion with corrosion became the main wear mechanism.

The Development of Corrosion Standard System of Water and Wastewater in Soil Environment (상·하수도 배관재의 토양환경에서의 부식표준시스템 개발)

  • Park, Kyeong-Dong;Shin, Yeong-Jin;Lee, Ju-Yeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.7-12
    • /
    • 2006
  • Galvanized steel pipe, copper pipe and stainless steel pipe, which is being used in waterworks piping materials. In case of galvanized steel pipe, the precipitation of a product is being generated due to the pollution of the tap water, a white water phenomenon, and various corrosion reaction because a zinc ion is melted by tap water. And in case of a cupper pipe, many problems which is harm in sanitation appeared because of a inflow of harmfulness substance by a frequent accident of a water leakage. So, to prevent these problems, it is substituted for stainless steel pipe. However, those problems is still occurring because of badness of welding, a problem of a water leakage in connection part, and a increment of construction expenses. Therefore, this research has examined the laying period according to each piping thickness and a corrosion shape according to each laying depth after laying in various soils(sandy loam, loamy, clay loam, clay) using galvanized steel pipe, copper pipe, and stainless steel pipe. That is, we has studied the data which is necessary for a rational method of preserving the quality of water by examining the corrosion properties of piping materials in the soil environment which waterworks piping materials is being used.

  • PDF

Effects of pH, Alkalinity, Chloride Ion on the Copper Pipe Corrosion (동관에서 pH, 알칼리도, 염소이온이 부식에 미치는 영향)

  • Jo, Kwan-Hyung;Kim, Sun-Il;Woo, Dal-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.1 s.94
    • /
    • pp.43-48
    • /
    • 2007
  • This study investigated the effects of pH, alkalinity, and chlorine ion which are important water quality impact factors to the corrosion in the simulated distribution system where the copper pipe is affixed. The result shows that pitting index was increased as the alkalinity and chloride ion increase in the distilled water, but there was no relation to pH. Actually the uniform corrosion rate was decreased as the pH increase with the laboratory tap water. In conclusion, it is necessary to control the pH which stands above minimum 7.5 to prevent pitting corrosion in the copper pipe. Consequently, comprehensive research about the effect of lime soda($Ca(OH)_2$) which was used as a coagulation additive in the water treatment plant to pipe corrosion must be accomplished additionally.

Adsorption rate of Phosphate Corrosion Inhibitor in Carbon Steel pipe (탄소강관에서의 인산염 부식억제제농도 감소의 반응속도상수 평가)

  • Woo, Dalsik;Hwang, Byunggi
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.1
    • /
    • pp.17-24
    • /
    • 2005
  • This study was performed to evaluate the adsorption rate of phosphate corrosion inhibitor and reaction rate constant in drinking water distribution systems. The optimum concentration of corrosion inhibitor would vary depending on the quality of water, pipe materials, and condition of metal surfaces. The current adsorption study indicated that the residual phosphate concentration of the corrosion inhibitor decreased with the time as it adsorbed on the surface of pipe material. As time went by, the residual phosphate concentration became constant. It means that the formation of the corrosion protection film on metal surfaces is completed.