• Title/Summary/Keyword: water corrosion

Search Result 1,466, Processing Time 0.025 seconds

Evaluation on the Properties of Modified-sulfur Concrete as a Basic Study for Development of Anti-corrosive Concrete (내부식성 콘크리트 개발을 위한 기초연구로서 개질유황 혼합 콘크리트의 물성 평가)

  • Park, Sang-Soon;Na, Ok-Jung
    • Corrosion Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.28-37
    • /
    • 2016
  • Due to the increased construction of offshore concrete structures and the use of de-icing salts for the purpose of snow removal, the needs for the development of anti-corrosive concrete are increasing. To solve these problems, an evaluation of the mechanical and durability properties for concrete were conducted by mixing modified-sulfur as 0 %, 5 %, 10 %, 15 % cement weight ratio. Both strengths and the properties affecting durability such as water absorption coefficient, chloride ion permeability, accelerated carbonation resistance, rapid freezing and thawing, and chemical resistance were evaluated. All evaluations performed were according to the test specifications associated KS. The results indicate that mixing of modified-sulfur lowed chloride ion permeability and improved chemical resistance.

Experimental study on the hydrophilic performance of pre-coated aluminum foil (알루미늄 호일의 친수코팅 성능 개선에 관한 실험적 연구)

  • 김영생;길용현;박환영;윤백;김자수소;김병열
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.725-732
    • /
    • 1999
  • It is usual to use hydrophilic-coated aluminum foil for evaporator fin of air-conditioners to reduce air flow resistance caused by the water droplets condensed on the fin surface. The major effect of a hydrophilic coating is to reduce the contact angle of the condensate and prevent bridging of the condensate between the adjacent fins. The performance of hydrophilic coating generally tends to be degraded as it is used since the coating material is washed down by the condensate. In the present work, several types of hydrophilic coatings were evaluated in terms of durability of hydrophilicity, corrosion resistance and heat resistance. Results showed that an improved hydrophilic coating of resin type presented superb qualify in terms of durability and corrosion resistance while having almost the same level of qualify in heat resistance compared with the others.

  • PDF

Cavitation-erosion Resistance of Stabilized Stainless Steel with Niobium Addition in Sea Water Environment (해수 내 캐비테이션-침식 저항성에 미치는 스테인리스강의 Nb 첨가의 영향)

  • Choi, Yong-Won;Han, Min-Su;Kim, Seong-Jong
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.3
    • /
    • pp.274-279
    • /
    • 2016
  • Stainless steel is widely used in various industries due to its excellent anti-corrosion characteristics. However, if the stainless steel is exposed to high speed fluid flow and chloride ion in the marine environment, corrosion and cavitation damage occurred on the surface easily. Therefore, to prevent these problems, stabilzed stainless steel is applied to offshore and shipbuilding industries. In this study, stabilized stainless steel specimen was made by 19%Cr-9%Ni with different Nb contents (0.29%, 0.46% and 0.71%). And then, their cavitation characteristics were investigated. As a result, the characteristics of cavitation resistance of stainless steel could be improved by increasing Nb contents.

Deposition and Characterization of Electrophoretic Paint on AZ31 Magnesium Alloy

  • Nguyen, Van Phuong;Moon, Sungmo
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.2
    • /
    • pp.141-146
    • /
    • 2016
  • In this study, electrophoretic paint (E-paint) was deposited on the knife-abraded surface of AZ31 magnesium alloy (AZ31), and its adhesion and corrosion resistance were examined by tape peel-test and salt spray test, respectively. E-paint started to deposit on AZ31 Mg alloy after an inductance time and pores were found in the E-paint layer which is ascribed to hydrogen bubbles generated on the surface during the painting process. The pores disappeared after curing for 15 min at $160^{\circ}C$. The E-paint on AZ31 exhibited good adhesion after immersion in deionized water for 500 h at $40^{\circ}C$. The E-paint sample without scratch showed no corrosion after 1500 h of salt spray test. However, on the scratched sample, blisters were visible adjacent to the scratched sites after 500 h of salt spray test.

Investigation for the Report of DC Traction Stray Current Protection (도시철도 전식방지 조사보고 현황)

  • Lee, Hyun-Goo;Ha, Tae-Hyun;Jung, Ho-Sung;Han, Moon-Sub;Bae, Jeong-Hyo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.281-285
    • /
    • 2008
  • Corrosion of metallic structures arises when an electric current flows from the metal into the electrolyte such as soil and water. The potential difference across the metal-electrolyte interface, the driving force for the corrosion current, can emerge due to a variety of temperature, pH, humidity and resistivity etc.. With respect to a given structure, a stray current is to be defined as a current flowing on a structure that is not part of the intended electrical circuit. Stray currents are caused by other cathodic protection installations, grounding systems and welding posts, referred to as steady state stray currents. But most often traction systems like railroads and tramlines are responsible for large dynamic stray currents. This type of stray current is generally results from the leakage of return currents from large DC traction systems that are grounded or have a bad earth-insulated return path. This paper investigates the reports, which is made for protecting the electrical corrosion by the DC traction stray current before the construction period.

  • PDF

HIGH BURNUP FUEL ISSUES

  • Rudling, Peter;Adamson, Ron;Cox, Brian;Garzatolli, Friedrich;Strasser, Alfred
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • One of the major current challenges to nuclear energy lies in its competitiveness. To stay competitive the industry needs to reduce maintenance and fuel cycle costs, while enhancing safety features. Extended burnup is one of the methods applied to meet these objectives However, there are a number of potential fuel failure causes related to increased burnup, as follows: l) Corrosion of zirconium alloy cladding and the water chemistry parameters that enhance corrosion; 2) Dimensional changes of zirconium alloy components, 3) Stresses that challenge zirconium alloy ductility and the effect of hydrogen (H) pickup and redistribution as it affects ductility, 4) Fuel rod internal pressure, 5) Pellet-cladding interactions (PCI) and 6) pellet-cladding mechanical interactions (PCMI). This paper discusses current and potential failure mechanisms of these failure mechanisms.

Embargo Nature of CuO-PANI Composite Against Corrosion of Mild Steel in Low pH Medium

  • Selvaraj, P. Kamatchi;Sivakumar, S.;Selvaraj, S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.139-147
    • /
    • 2019
  • Incorporation of CuO nanoparticles during the polymerization of aniline in the presence of ammonium peroxydisulphate as an oxidizing agent and sodium salt of dodecylbenzene sulphonic acid as dopant as well as surfactant yielded water soluble CuO-PANI composite. Comparison of recorded spectra like FTIR, XRD and SEM with reported one confirm the formation of the composite. Analysis by gravimetric method exposes that the synthesized composite is having resistivity against corrosion, with slight variation in efficiency on extending the time duration up to eight hours in strong acidic condition. OCP measurement, potentiodynamic polarization and EIS studies also confirms the suppression ability of composite against corrosion. Riskless working environment could be provided by the synthesized composite during industrial cleaning process.

Fabrication of functional aluminum surface through anodization mode transition (양극산화 모드 전환을 통한 기능성 알루미늄 표면 연구)

  • Park, Youngju;Jeong, Chanyoung
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.6
    • /
    • pp.417-424
    • /
    • 2022
  • This research develops an easy-to-use, environmentally friendly method for fabricating functional 1050 aluminum alloy surfaces with excellent corrosion resistance. Functional aluminum surfaces with various nanostructures are fabricated by controlling the experimental conditions of anodizing process. The experiment used a multi-step anodizing process that alternates between two different anodizing modes, mild anodizing (MA) and hard anodizing (HA), together with a pore-widening (PW) process. Among them, the nanostructured surface with a small solid fraction shows superhydrophobicity with a contact angle of more than 170° after water-repellent coating. In addition, the surface with superhydrophobicity is difficult for corrosive substances to penetrate, so the corrosion resistance is greatly improved.

STRESS CORROSION CRACKING PROPERTIES OF STEAM GENERATOR TUBING ALLOYS IN CREVICE ENVIRONMENT

  • JUNG-HO SHIN;DONG-JIN KIM
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.2
    • /
    • pp.543-545
    • /
    • 2019
  • The safe and reliable operation of pressurized water reactors (PWRs) depends on the integrity of structural material. In particular, the failure of steam generator (SG) tubes on the secondary side is one of the major concerns of operating nuclear power plants. To establish remediation techniques and manage damage, it is necessary to articulate the mechanism through which various impurities affect the SG tubes. This research aims to understand the effect of impurities (e.g., S, Pb, and Cl) on the stress corrosion cracking of Alloy 600 and 690.

Analysis of Degradation of Durability of the GDL with Various MPL Penetration Levels (MPL 침투깊이에 따른 GDL 내구성능 저하 특성 분석에 관한 연구)

  • Park, Jaeman;Cho, Junhyun;Ha, Taehun;Min, Kyoungdoug;Lee, Eunsook;Jyoung, Jy-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.77.1-77.1
    • /
    • 2010
  • Durability problems of gas diffusion layer(GDL) is one of the important issues for accomplishing commercialization of proton exchange membrane fuel cell(PEMFC). GDL is strongly related to the performance of PEMFC because one of the main function of GDL is to work as a path of fuel, air and water. When the GDL is degraded, it causes water balance problems such as the flooding phenomenon. Thus, investigating the durability characteristics of the GDL is important and understanding the GDL degradation process is needed. In this study, the GDLs are degraded by carbon corrosion stress method which is the electrochemical degradation mode. To determine the effects of carbon corrosion of the GDL, 1.45 V of potential is imposed for 96 hours. In this manner, in the previous research, the structure between the substrate and the MPL is weaken. Further investigations are needed to clarify this phenomenon. Therefore, in this study, the carbon corrosion stress method is carried out with GDLs which have various MPL penetration levels and the effects of the MPL penetration level on the characteristics change of the GDL are analyzed. The changes in characteristics are measured with various properties of GDL such as weight, thickness and static contact angle. The degraded GDL shows loss of their properties.

  • PDF