• Title/Summary/Keyword: water control

Search Result 12,102, Processing Time 0.056 seconds

Study on the Management of Doam Dam Operation by the Analysis of Suspended Solids Behavior in the lake (호내 부유물질 거동 분석을 통한 도암댐 운영 방안에 관한 연구)

  • Yeom, Bo-Min;Lee, Hye Won;Moon, Hee-Il;Yun, Dong-Gu;Choi, Jung Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.470-480
    • /
    • 2019
  • The Doam lake watershed was designated as a non-point pollution management area in 2007 to improve water quality based on watershed management implementation. There have been studies of non-point source reduction with respect to the watershed management impacting the pollutant transport of the reservoir. However, a little attention has been focused on the impact of water quality improvement by the management of the dam operation or the guidelines on the dam operation. In this study, the impact of in-lake management practices combined with watershed management is analyzed, and the appropriate guidelines on the operation of the dam are suggested. The integrated modeling system by coupling with the watershed model (HSPF) and reservoir water quality model (CE-QUAL-W2) was applied for analyzing the impact of water quality management practices. A scenario implemented with sedimentation basin and suspended matter barrier showed decrease in SS concentration up to 4.6%. The SS concentration increased in the scenarios adjusting withdrawal location from EL.673 m to the upper direction(EL.683 m and EL.688 m). The water quality was comparably high when the scenario implemented all in-lake practices with water intake at EL.673 m. However, there was improvement in water quality when the height of the water intake was moved to EL.688 m during the summer by preventing sediments inflow after the rainfall. Therefore, to manage water quality of the Doam lake, it is essential to control the water quality by modulating the height of water intake through consistent turbidity monitoring during rainfall.

Evaluation of Water Quality Prediction Models at Intake Station by Data Mining Techniques (데이터마이닝 기법을 적용한 취수원 수질예측모형 평가)

  • Kim, Ju-Hwan;Chae, Soo-Kwon;Kim, Byung-Sik
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.5
    • /
    • pp.705-716
    • /
    • 2011
  • For the efficient discovery of knowledge and information from the observed systems, data mining techniques can be an useful tool for the prediction of water quality at intake station in rivers. Deterioration of water quality can be caused at intake station in dry season due to insufficient flow. This demands additional outflow from dam since some extent of deterioration can be attenuated by dam reservoir operation to control outflow considering predicted water quality. A seasonal occurrence of high ammonia nitrogen ($NH_3$-N) concentrations has hampered chemical treatment processes of a water plant in Geum river. Monthly flow allocation from upstream dam is important for downstream $NH_3$-N control. In this study, prediction models of water quality based on multiple regression (MR), artificial neural network and data mining methods were developed to understand water quality variation and to support dam operations through providing predicted $NH_3$-N concentrations at intake station. The models were calibrated with eight years of monthly data and verified with another two years of independent data. In those models, the $NH_3$-N concentration for next time step is dependent on dam outflow, river water quality such as alkalinity, temperature, and $NH_3$-N of previous time step. The model performances are compared and evaluated by error analysis and statistical characteristics like correlation and determination coefficients between the observed and the predicted water quality. It is expected that these data mining techniques can present more efficient data-driven tools in modelling stage and it is found that those models can be applied well to predict water quality in stream river systems.

Manganese Removal of Bank Filtrate using Manganese Sand Filtration (망간모래여과를 이용한 강변여과수의 망간제거)

  • Kim, Chung-Hwan;Kim, Hak-Chul;Kim, Han-Seung;Kim, Berm-Soo;Ahn, Hyo-Won
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.409-414
    • /
    • 2004
  • Pilot-scale experiments were performed for the treatment of bank filtrate contammg high manganese concentration around 2mg/L using rapid manganese sand filtration to investigate effects of oxidant dose and pH control on the removal efficiency of manganese. For theoretical dose ranges of oxidant (sodium hypochlorite) between 3 and 4mg/L, the manganese concentration of effluent was 0.57 mg/L, which corresponded to 72.5% removal and was higher than drinking water quality standards of 0.3mg/L. For excess dose ranges of oxidant between 4 and 8mg/L, the manganese concentration of effluent was reduced to 0.14mg/L, which corresponded to 94.5% removal, but the residual chlorine concentration was over 1.0mg/L. On the other hand, manganese removal efficiency drastically increased up to the value of 98.0%, which is equivalent to the effluent concentration of 0.03mg/L by controling pH to the range between 7 and 8 for the theoretical dose of oxidant. Consequently, these results indicated that appropriate dose of chemicals, such as oxidant and alkali, and continuous monitoring of manganese should be necessary to obtain efficient removal of manganese and to optimize the maintenance of treatment facilities for the treatment of bank filtrate with high concentration of manganese.

Research on How to Set 3rd Phase Target Water Quality on the Boundary between Metropolitan Cities/Dos Specified in Nakdong River Basin (낙동강수계 3단계 광역시·도 경계지점 목표수질 설정 방법 연구)

  • Hwang, Ha Sun;Park, Ji Hyung;Kim, Yong Seok;Rhew, Doug Hee;Choi, Yu Jin;Lee, Sung Jun
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.1
    • /
    • pp.70-77
    • /
    • 2017
  • Total Pollution Load Control (TPLC) is a system for managing the discharge load assigned by satisfying the Target Water Quality (TWQ) in Standard Flow Conditions (SFC). TWQ for a between Metropolitan Cities/Dos Specified (Cites/Dos TWQ) is very important to be the basis of each Unit Watershed TWQ. The purpose of this study was to establish a rational and scientific 'Calculation Metohd of Cites/Dos TWQ'. A methodology for the 3rd phase 'Cites/Dos TWQ' was proposed in this study based on review of the past phase (1rd and 2rd) 'Cites/Dos TWQ' in nakdong river. And utilized water quality model to estimate 3rd phase 'Cites/Dos TWQ' The allocation method of individual discharge sources are important for estimating 'Cites/Dos TWQ' In this case, the key point of the method of calculating the total allowable individual sources is the balance of the equity and the efficiency between individual sources of reduced pollutants. Thus, water quality shall be determined with regard to the current emission levels, the reduction capacity and the technical possibilities of individual sources. We estimate 3rd phase 'Cites/Dos TWQ' according to the 'Calculation Method of Cites/Dos TWQ'.

Water Deficit of Pitch Pines Caused by Superficial Rooting and Air Pollutants in Seoul and Its Vicinity

  • Joon-Ho kim;Rhyu, Tae-Cheol
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.309-316
    • /
    • 1994
  • To make regional comparisons of water status of pitch pine, the temporal changes of water status in pitch pine were investigated at different areas; urban Seoul (heavily polluted area), surburb of Seoul (lightly polluted area), and rural area (control). The effects of air pollutants, acid rain and chemical properties of soil on water deficit in pitch pine were also investiaged. Water content of needles growing at polluted areas were usually lower than that at unpolluted area. Water saturation deficit of needles growing at polluted areas were usually higher than that at unpolluted area especially in dry season. These results indicated that water in needles growing at polluted areas were usually more deficient than that at unpolluted area, and were more deficient in April than other months. At polluted areas, the older the needles were, the more quickly transpirated the water in the needle was. At unpolluted areas, however, water in old needles was not so quickly transpirated as those at polluted areas. Water potential of needles of pitch pine seedlings treated with simulated acid rain (SAR) of pH 3.5 decreased more quickly than that of needles treated with SAR of pH 5.6. Loss of water through epicuticular layer was greater in the following order: magnesium deficiency+100 $\mu$M aluminium>100$\mu$M aluminium>magnesium deficiency>control. In addition to Mg deficiency and Al toxicity, growth decline of pitch pine widely occurring in polluated Seoul could to a large extent be due to cuticle degredation and abnormal vertical distribution of fine roots, which lead to water stress, particularly in dry seasons.

  • PDF

Water Quality Simulation of Juam Reservoir Depend on Total Pollution Loads Control (총량규제에 따른 주암호의 장래 수질 예측)

  • Jang, Sung-Ryong;An, Ki-Sun;Kwon, Young-Ho;Han, Jae-Ik
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • When the Juam multipurpose dam which is connected with existing large water supply facilities is finished, water environment is changed from stream to lake. The changed quality of water should be examined. In this study, the result of water quality forecasting is analysed and an effective management plan of water quality is presented. Tn this study, the WASPS model that is a dynamic water quality simulation model was selected to forecast the water quality. This model forecasts movement of change of pollutants. For an application of the model, the subject areas were divided into seventeen sub-areas by considering change temperature depending measuring points and on depth of water. Meteorological data collected by the meteorological observatory and data about quality measured by the Korea Water Resources Development Corporation were used for an operation of the model. As a result of quality examination through quality data and estimated pollutant loading, the water quality environment criterion was grade II and the nutritive condition was measured as meso-graphic grade. In this study, an effective management was planned to improve water quality by reducing pollution load. According to the result of examination, when more than 30% of BOD was reduced it was recorded that the environment standard of water quality was improved to the second grade.

Experimental Evaluation on the Vibration Control Effect of Tuned Liquid Damper with Embossment (벽면 요철형 동조액체댐퍼의 진동제어성능에 관한 실험적 평가)

  • Ju, Young Kyu;Kim, Dae Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.765-772
    • /
    • 2002
  • Many researchers have studied several vibration control devices such as TMD, TLD, and VED to reduce the acceleration level for tall buildings. Advantages of TLD (tuned liquid damper) include easy installation, low cost, and less maintenance. However, the dynamic characteristics of TLD must be verified by experiment and analysis due to the difficulties in evaluating the characteristics of water sloshing. In this study, free vibration and dynamic excitation experiments of structure with TLD were conducted to verify vibration control force of the proposed TLD for high-rise building. The parameters were mass ratio of water to structure, number of damping nets, and aspect ratio. From the test results, the responses of structure with water tank were observed to be smaller than those of structure alone. Furthermore, better damping effect could be achieved with larger mass ratio, more damping nets, and larger aspect ratio. However, in the case of water tank with no damping net, little damping effect was obtained.

Comparison of the Effects of Lemon Ice and Water Ice on Decreasing Thirst of the Patients with Nasal Surgery (레몬얼음과 생수얼음을 이용한 구강간호가 비강수술 환자의 갈증 및 구강상태에 미치는 효과 비교)

  • Jung, Hyun Joo;Yun, Ji Young;Park, Jee Eun;Shim, In Suk;Kim, Woon Joung;Lee, Ju Hee;Lee, Mi Ran;Lee, Keum Nam
    • Journal of Korean Clinical Nursing Research
    • /
    • v.18 no.2
    • /
    • pp.196-204
    • /
    • 2012
  • Purpose: This study was aimed to compare the effects of lemon ice and water ice on decreasing thirst of the patients with nasal surgery. Methods: A nonequivalent control group non-synchronized design was used for the study. The level of thirst and oral assessment were measured. A total of 60 subjects was recruited; 30 subjects for the experimental group in which lemon ice was provided and the other 30 subjects were in the control group in which on water ice was administered. Results: The scores of thirst were decreased in both lemon ice and water ice group. But it appeared that the score of thirst in the experimental group is significantly lower than that of the control group. Moreover, the score of the assessment of the patient's oral cavity was also significantly improved in the experimental group than that of the control group. Conclusion: The lemon ice seems an effective and easy-to-apply intervention in reducing thirst and mouth dryness over water ice in nursing practice.

Evaluating Pre-silicon Treatment to Alleviate Drought Stress and Increases Antioxidative Activity in Zoysia japonica

  • Bae, Eun-Ji;Han, Jeong-Ji;Choi, Su-Min;Lee, Kwang-Soo;Park, Yong-Bae
    • Weed & Turfgrass Science
    • /
    • v.4 no.4
    • /
    • pp.360-367
    • /
    • 2015
  • This study was performed to determine the effects of silicon on zoysiagrass after the application of drought stress. The daily amount of water or scilicon solution was 150 ml per a pot. For 14 days, plants were treated with 0.1 and 1.0 mM silicon (Si) and with distilled water for control and the drought only-treatment. Afterward, the plants in Si and drought treatment were exposed to a 21-day under drought stress condition but the plants in control received water. The results indicated that the growth and the moisture and chlorophyll contents decreased in the drought only-treatment and 0.1 mM Si compared to the control. However, 1.0 mM Si showed an increase in the growth with a significant increase of water and chlorophyll contents. The MDA and $H_2O_2$ concentrations and electrolyte leakage decreased, while the radical scavenging capacity increased in 1.0 mM Si. 1.0 mM Si showed little to no differences in the growth and no differences in water and chlorophyll contents, electrolyte leakage, MDA and $H_2O_2$ concentrations and antioxidant capacity compared to the control. These results suggested that application of silicon is useful for drought tolerance improvement of zoysiagrass under drought that is occurring in turf fields.

An Assessment of Energy Consumption in Steam-Humidification- and Water-Spray-Humidification-Type Outdoor Air Conditioning Systems for Semiconductor Manufacturing Clean Rooms (반도체 클린룸용 증기가습 및 수분무가습 외기공조시스템의 에너지소비량 평가)

  • Kim, Ki-Cheol;Song, Gen-Soo;Kim, Hyung-Tae;Yoo, Kyung-Hoon;Shin, Dae-Kun;Park, Dug-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.2
    • /
    • pp.55-63
    • /
    • 2013
  • For a large-scale semiconductor manufacturing clean room, the energy consumed in an outdoor air conditioning system to heat, humidify, cool and dehumidify incoming outdoor air is very large. In particular, the energy requirement to humidify outdoor air in the winter season is generally known to be high. Recently, in order to overcome the high energy consumption nature of a steam generator in a conventional steam humidification type outdoor air conditioning system, an air washer is often introduced instead of the steam generator in the outdoor air conditioning system, which can be called a water spray humidification type outdoor air conditioning system. Therefore, the assessment and comparison of the annual energy consumed in the steam humidification type and the water spray humidification type outdoor air conditioning systems deserves to be examined in order to reduce the outdoor air conditioning load of a clean room. In the present study, a numerical analysis was conducted to obtain the annual electric power consumption of the two outdoor air conditioning systems. It was shown from the comparison of the numerical results that the water spray humidification type outdoor air conditioning system can reduce about 30% of annual electric power consumption of the steam humidification type outdoor air conditioning system.