• Title/Summary/Keyword: water contact angle

Search Result 697, Processing Time 0.024 seconds

Mechanical and Biological Characteristics of Reinforced 3D Printing Filament Composites with Agricultural By-product

  • Kim, Hye-Been;Seo, Yu-Ri;Chang, Kyeong-Je;Park, Sang-Bae;Seonwoo, Hoon;Kim, Jin-Woo;Kim, Jangho;Lim, Ki-Taek
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.233-241
    • /
    • 2017
  • Scaffolds of cell substrates are biophysical platforms for cell attachment, proliferation, and differentiation. They ultimately play a leading-edge role in the regeneration of tissues. Recent studies have shown the potential of bioactive scaffolds (i.e., osteo-inductive) through 3D printing. In this study, rice bran-derived biocomposite was fabricated for fused deposition modeling (FDM)-based 3D printing as a potential bone-graft analogue. Rice bran by-product was blended with poly caprolactone (PCL), a synthetic commercial biodegradable polymer. An extruder with extrusion process molding was adopted to manufacture the newly blended "green material." Processing conditions affected the performance of these blends. Bio-filament composite was characterized using field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDX). Mechanical characterization of bio-filament composite was carried out to determine stress-strain and compressive strength. Biological behaviors of bio-filament composites were also investigated by assessing cell cytotoxicity and water contact angle. EDX results of bio-filament composites indicated the presence of organic compounds. These bio-filament composites were found to have higher tensile strength than conventional PCL filament. They exhibited positive response in cytotoxicity. Biological analysis revealed better compatibility of r-PCL with rice bran. Such rice bran blended bio-filament composite was found to have higher elongation and strength compared to control PCL.

Preparation of Flame Retardant and Antibacterial Wood with Composite Membrane Coating

  • XU, Jun-xian;LIU, Yang;WEN, Ming-yu;PARK, Hee-Jun;ZHU, Jia-zhi;LIU, Yu-nan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.658-666
    • /
    • 2021
  • A novel flame retardant and antibacterial composite membrane coating for wood surfaces was prepared by adding POSS-based phosphorous nitrogen flame retardant (later referred to as NH2-POSS) and silver nanoparticles (Ag NPs) to chitosan (CS). The effects of NH2-POSS content (mass fractions of CS 0%, 0.5%, 1%, 3%, 5%, and 7%) on the structure and properties of the composite membrane coating on wood were investigated. The composite film was prepared by the method of blending and ducting. Contact angle, tensile property and antibacterial effects of the composite film were measured, and infrared spectroscopy was used. The results show that the addition of NH2-POSS can not only improve the toughness of the membrane, but also the flame retardancy of the membrane, which improves the application of the membrane in wood products. However, with the addition of NH2-POSS, the transparency of the composite membrane was weakened. The inhibitory effect of the composite membrane on the growth of Escherichia coli was enhanced with the increase in Ag NPs. This research provides a foundation for the application of functional wood.

Polydopamine-mediated surface modifications of poly ʟ-lactic acid with hydroxyapatite, heparin and bone morphogenetic protein-2 and their effects on osseointegration

  • Yun, Young Jin;Kim, Han-Jun;Lee, Deok-Won;Um, Sewook;Chun, Heung Jae
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.244-254
    • /
    • 2018
  • Surface modified poly ${\text\tiny{L}}$-lactic acid (PLLA) samples with hydroxyapatite (HA), heparin and bone morphogenetic protein-2 (BMP-2) mediated by polydopamine (pDA) coating (PLLA/pDA/HA/Hep/BMP-2) were prepared, and their effects on the enhancements of bone formation and osseointegration were evaluated in vitro and in vivo as compared to PLLA, PLLA/pDA/HA, and PLLA/pDA/Hep/BMP-2. The changes in surface chemical compositions, morphologies and wettabilities were observed by X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and water contact angle measurements. Pre-coating of HA particles with pDA provided uniform and homogeneous anchoring of particles to PLLA surface. In addition, the strong ionic interaction between heparin and pDA led PLLA surface readily heparinized for loading of BMP-2. In vitro experiments revealed that the levels of alkaline phosphatase (ALP) activity, calcium deposition, and osteocalcin (OCN) gene expression were higher in MG-63 human osteosarcoma cell lines grown on PLLA/pDA/HA/Hep/BMP-2 than on control PLLA, PLLA/pDA/HA, and PLLA/pDA/Hep/BMP-2. In vivo studies using micro-computed tomography (micro-CT) also showed that PLLA/pDA/HA/Hep/BMP-2 screw exhibited greatest value of bone volume (BV) and bone volume/tissue volume (BV/TV) among samples. Histological evaluations with H&E and Von Kossa staining demonstrated that a combination of HA and BMP-2 contributed to the strong osseointegration.

Hydrophobic Organic/Inorganic Composite Films with 3D Hierarchical Nanostructured Surfaces (3D 계층적 나노구조화된 표면을 갖는 소수성 유/무기 복합 필름)

  • Seo, Huijin;Ahn, Jinseong;Park, Junyong
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.264-268
    • /
    • 2021
  • In this study, we propose a method for fabricating hydrophobic coatings/films with three-dimensional (3D) hierarchical nanostructured organic/inorganic composite surfaces. An epoxy-based, large-area 3D ordered nanoporous template is first prepared through an advanced photolithography technique called Proximity-field nanoPatterning (PnP). Then, a hierarchically structured surface is generated by densely impregnating the template with silica nanoparticles with an average diameter of 22 nm through dip coating. Due to the coexisting micro- and nano-scale roughness on the surface, the fabricated composite film exhibits a higher contact angle (>137 degrees) for water droplets compared to the reference samples. Therefore, it is expected that the materials and processes developed through this study can be used in various ways in the traditional coating/film field.

Properties of Paint Protection Film Containing Poly(urea-urethane)-based Self-Recovery Coating Layer (Poly(urea-urethane) 자기복원 코팅층을 가진 도장 보호필름 물성 연구)

  • Minseok Song
    • Journal of Adhesion and Interface
    • /
    • v.24 no.2
    • /
    • pp.69-75
    • /
    • 2023
  • Recently, the application of paint protection films (PPFs) for automobiles having a self-recovery coating layer has been grown up. In this study, we report the evaluation results on the basic physical properties of a poly(vinyl chloride)- based PPF containing poly(urea-urethane) hybrid self-recovery coating layer. Depending on the main chemical composition and the thickness of poly(urea-urethane)-based coating layer for PPF, the self-recovery performance by an optical microscope and the stain resistance through color difference value are measured. To improve the surface properties and show its easy-cleaning effect against the polluted things, silicone-modified polyacrylate is introduced to the self-recovery coating composition. The contact angle of water on the coated surface is confirmed to show its hydrophobic surface. Finally, accelerated weathering test of paint protection film with poly(urea-urethane) hybrid coating layer is performed to check the possibility of discoloration and deformation due to long-term exposure on harsh condition.

Effect of universal adhesive pretreatments on the bond strength durability of conventional and adhesive resin cements to zirconia ceramic

  • Tae-Yub Kwon;Seung-Hee Han;Du-Hyeong Lee;Jin-Woo Park;Young Kyung Kim
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.2
    • /
    • pp.105-114
    • /
    • 2024
  • PURPOSE. This study aimed to evaluate the effect of pretreatment of three different universal adhesives (Single Bond Universal [SBU], All-Bond Universal [ABU], and Prime&Bond universal [PBU]) on the bonding durability of an adhesive (Panavia F 2.0, PF) and a conventional (Duo-Link, DL) resin cements to air-abraded zirconia. MATERIALS AND METHODS. Rectangular-shaped zirconia specimens were prepared. The chemical composition and surface energy parameters of the materials were studied by Fourier transform infrared spectroscopy and contact angle measurement, respectively. To evaluate resin bonding to the zirconia, all the bonding specimens were immersed in water for 24 h and the specimens to be aged were additionally thermocycled 10000 times before the shear bond strength (SBS) test. RESULTS. The materials showed different surface energy parameters, including the degree of hydrophilicity/hydrophobicity. While the DL/CON (no pretreatment) showed the lowest SBS and a significant decrease in the value after thermocycling (P < .001), the PF/CON obtained a higher SBS value than the DL/CON (P < .001) and no decrease even after thermocycling (P = .839). When the universal adhesives were used with DL, their SBS values were higher than the CON (P < .05), but the trend was adhesive-specific. In conjunction with PF, the PF/SBU produced the highest SBS followed by the PF/ABU (P = .002), showing no significant decrease after thermocycling (P > .05). The initial SBS of the PF/PBU was similar to the PF/CON (P = .999), but the value decreased after thermocycling (P < .001). CONCLUSION. The universal adhesive pretreatment did not necessarily show a synergistic effect on the bonding performance of an adhesive resin cement, whereas the pretreatment was beneficial to bond strength and durability of a conventional resin cement.

WETTABILITY AND DRUG DELIVERY OF FUNCTIONALLY GRADED NANO-MICRO POROUS TITANIUM SURFACE

  • Yun, Kwi-Dug;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.307-319
    • /
    • 2008
  • STATEMENT OF PROBLEM: It is known that an anodic oxidation technique, one of the methods for the implant surface treatment, remarkably increased surface area, enhanced wettability and accelerated the initial bone healing. Purpose: This study was performed to evaluate the wettability of anodized titanium surface which has a nanotubular structure, to assess osseointegration after the placement of implant with nano-size tubes on tibia of rats and to analyze quantitatively transferable rhBMP-2 on each surface. MATERIAL AND METHOD: Four different kinds of surface-treated titanium discs (polished (machined surface) group, micro (blasting surface) group, nano (anodizedmachined surface) group, and nano-micro (anodized-blasting surface) group) were fabricated (n=10). Three different media were chosen to measure the surface contact angles; distilled water, plasma and rhBMP-2 solution. After a single drop (0.025 $m{\ell}$) of solution, the picture was taken with the image camera, and contact angle was measured by using image analysis system. For the test of osseointegration, 2 kinds of anodized surface (anodized-machined surface, anodized-blasting surface) implants having 2.0 mm in diameter and 5.0 mm in length inserted into the tibia of Wistar rats. After 3 weeks, tibia were harvested and the specimens were stained with hematoxylin and eosin for histological analysis. To test the possibility of drug delivery, after soaking sample groups in the concentration of 250 ng/$m{\ell}$l of rhBMP-2 for 48 hours, the excess solution of rhBMP-2 were removed. After that, they were lyophilized for 24 hours, and then the rhBMP-2 on the surface of titanium was resolved for 72 hours in PBS. All the extracted solution was analyzed by ELISA. One-way analysis of variance (ANOVA) was performed on the data. RESULTS: The wettability is improved by anodic oxidation. The best wettability was shown on the nano-micro group, and it was followed by nano group, micro group, and polished group. In the histological findings, all implants showed good healing and the new bone formation were observed along the implant surface. After 3 days, nano-micro group delivered the most amount of rhBMP-2, followed by nano group, micro group, and polished group. CONCLUSION: It indicated that anodic oxidation on blasting surface produce functionally graded nano-micro porous structure and enhance hydrophilicity of the surface and osseointegration. The findings suggest that the nano-micro porous structure could be a useful carrier of osteogenic molecules like rhBMP-2.

Electrochemical Characteristics of Nanotubular Ti-25Nb-xZr Ternary Alloys for Dental Implant Materials

  • Byeon, In-Seop;Park, Seon-Young;Choe, Han-Cheol
    • Journal of Korean Dental Science
    • /
    • v.10 no.1
    • /
    • pp.10-21
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the electrochemical characteristics of nanotubular Ti-25Nb-xZr ternary alloys for dental implant materials. Materials and Methods: Ti-25Nb-xZr alloys with different Zr contents (0, 3, 7, and 15 wt.%) were manufactured using commercially pure titanium (CP-Ti), niobium (Nb), and zirconium (Zr) (99.95 wt.% purity). The alloys were prepared by arc melting in argon (Ar) atmosphere. The Ti-25Nb-xZr alloys were homogenized in Ar atmosphere at $1,000^{\circ}C$ for 12 hours followed by quenching into ice water. The microstructure of the Ti-25Nb-xZr alloys was examined by a field emission scanning electron microscope. The phases in the alloys were identified by an X-ray diffractometer. The chemical composition of the nanotube-formed surfaces was determined by energy-dispersive X-ray spectroscopy. Self-organized $TiO_2$ was prepared by electrochemical oxidation of the samples in a $1.0M\;H_3PO_4+0.8wt.%$ NaF electrolyte. The anodization potential was 30 V and time was 1 hour by DC supplier. Surface wettability was evaluated for both the metallographically polished and nanotube-formed surfaces using a contact-angle goniometer. The corrosion properties of the specimens were investigated using a 0.9 wt.% aqueous solution of NaCl at $36^{\circ}C{\pm}5^{\circ}C$ using a potentiodynamic polarization test. Result: Needle-like structure of Ti-25Nb-xZr alloys was transform to equiaxed structure as Zr content increased. Nanotube formed on Ti-25Nb-xZr alloys show two sizes of nanotube structure. The diameters of the large tubes decreased and small tubes increased as Zr content increased. The lower contact angles for nanotube formed Ti-25NbxZr alloys surfaces showed compare to non-nanotube formed surface. The corrosion resistance of alloy increased as Zr content increased, and nanotube formed surface showed longer the passive regions compared to non-treatment surface. Conclusion: It is confirmed that corrosion resistance of alloy increased as Zr content increased, and nanotube formed surface has longer passive region compared to without treatment surface.

A Study on Surface Properties of Mechanical Interfacial Behavior of DGEBA/PMR-15 Blends (DGEBA/PMR-15 블렌드계의 표면특성 변화가 기계적 계면특성에 미지는 영향)

  • Park, Soo-Jin;Lee, Hwa-Young;Han, Mijeong;Hong, Sung-Kwon
    • Journal of Adhesion and Interface
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • In this work, the effect of PMR-15 content on the variation of surface free energy of the DGEBA/PMR-15 blend system was investigated in terms of contact angles and mechanical interfacial tests. Based on FT-IR result of the blend system. C=O (1,772, $1,778cm^{-1}$) and C-N ($1,372cm^{-1}$) peaks appeared with imidization of PMR-15 and -OH ($3,500cm^{-1}$) peak showed broadly at 10 phr of PMR-15 by ring-opening of epoxy. Contact angle measurements were performed by using deionized water and diiodomethane as testing liquids. As a result, the surface free energy of the blends gave a maximum value at 10 phr of PMR-15, due to the significant increasing of specific component. The mechanical interfacial properties measured from the critical stress intensity factor ($K_{IC}$) and the critical strain energy release rate ($G_{IC}$) showed a similar behavior with the results of surface energetics. This behavior was probably attributed to The improving of the interfacial adhesion between intermolecules, resulting from increasing the hydrogen bondings of the blends.

  • PDF

A Study on Analysis of electrolyzed water properties with pH changes (pH 변화에 따른 전리수 분석에 관한 연구)

  • Kim, Baekma;Kim, Minjung;Kim, Wohyuk;Kim, Bongsuk;Ryoo, Kunkul
    • Clean Technology
    • /
    • v.10 no.1
    • /
    • pp.47-51
    • /
    • 2004
  • 현재 반도체 공정에서 사용되는 세정기술은 대부분이 1970년대 개발된 RCA 세정법인 과산화수소를 근간으로 하는 습식 세정으로, 표면의 입자를 제거하기 위한 SC-1 세정액은 강력한 산화제인 과산화수소에 의한 표면과 입자의 산화와 암모니아에 의한 표면의 에칭이 동시에 일어나 입자를 표면으로부터 분리시킨다. 금속 불순물을 제거하기 위한 SC-2 세정액은 염산과 과산화수소 혼합액을 사용하며 금속 불순물을 용해시켜 알칼리나 금속 이온을 형성하거나 용해 가능한 화합물을 형성시켜 제거한다. 또한 황산과 과산화수소를 혼합한 Piranha 세정액은 효과적인 유기물 제거제로서 웨이퍼에 오염된 유기물을 용해 가능한 화합물로 만들거나 과산화수소에 의해 형성되는 산화막내에 오염물을 포함시켜 불산 용액으로 산화막을 제거할 때 함께 제거된다. 최근 금속과 산화막을 동시에 제거하기 위해 희석시킨 불산에 과산화수소를 첨가한 세정공정이 사용되고 있으며 불산에 의해 표면의 산화막이 제거될 때 산화막내에 포함된 금속 불순물을 동시에 제거시킬 수 있다. 그러나 이와 같이 습식세정액 내에 공통적으로 포함되어 있는 과산화수소의 분해는 그만큼 가속화되어 사용되는 화학 약품의 양이 그만큼 증가하게 되고 조작하기 어려운 단점도 있다. 이를 해결하기 위해 환경친화적인 관점으로 화학약품의 사용을 최소화하는 등 RCA세정을 보완하는 연구가 계속 진행되고 있다. 본 연구에서는 RCA세정법을 환경적으로 대체할 수 있는 세정에 사용되는 전리수의 pH변화에 따른 전리수 분석을 하였다. 전리수의 제조를 위하여 전해질로는 NH4CI (HCI:H2O:NH4OH=1:1:1)를 사용하였다. pH 11 이상, ORP -700mV~-850mV인 환원수와 pH 3 이하, ORP 1000mV~1200mV인 산화수를 제조하였으며, 초순수를 첨가하여 pH 7.2와 ORP 351.1mV상태까지 조절하였다. 이렇게 만들어진 산화수와 환원수를 시간 변화와 pH 변화에 따라 Clean Room 안에서 FT-IR과 접촉각 측정기로 실험하였다. FT-IR분석에서 산화수는 pH가 높아질수록, 환원수는 낮아질수록 흡수율이 낮아졌다. 접촉각 실험에서는 산화수의 pH가 높아질수록 환원수의 pH가 낮아질수록 접촉각이 커짐을 확인하였다. 결론적으로 전리수를 이용하여 세정을 하면, 접촉성을 조절할 수 있어 반도체 세정을 가능하게 할 수 있으며, 환경친화적인 결과를 도출할 것으로 전망된다.

  • PDF