DOI QR코드

DOI QR Code

Polydopamine-mediated surface modifications of poly ʟ-lactic acid with hydroxyapatite, heparin and bone morphogenetic protein-2 and their effects on osseointegration

  • Yun, Young Jin (Institute of Cell & Tissue Engineering, Department of Biomedical Sciences, College of Medicine, The Catholic University of Korea) ;
  • Kim, Han-Jun (Department of Clinical Pathology, College of Veterinary Medicine, Konkuk University) ;
  • Lee, Deok-Won (Department of Oral and Maxillofacial Surgery, Kyung Hee University Dental Hospital at Gangdong, Kyung Hee University) ;
  • Um, Sewook (Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University) ;
  • Chun, Heung Jae (Institute of Cell & Tissue Engineering, Department of Biomedical Sciences, College of Medicine, The Catholic University of Korea)
  • Received : 2018.05.23
  • Accepted : 2018.06.27
  • Published : 2018.11.25

Abstract

Surface modified poly ${\text\tiny{L}}$-lactic acid (PLLA) samples with hydroxyapatite (HA), heparin and bone morphogenetic protein-2 (BMP-2) mediated by polydopamine (pDA) coating (PLLA/pDA/HA/Hep/BMP-2) were prepared, and their effects on the enhancements of bone formation and osseointegration were evaluated in vitro and in vivo as compared to PLLA, PLLA/pDA/HA, and PLLA/pDA/Hep/BMP-2. The changes in surface chemical compositions, morphologies and wettabilities were observed by X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and water contact angle measurements. Pre-coating of HA particles with pDA provided uniform and homogeneous anchoring of particles to PLLA surface. In addition, the strong ionic interaction between heparin and pDA led PLLA surface readily heparinized for loading of BMP-2. In vitro experiments revealed that the levels of alkaline phosphatase (ALP) activity, calcium deposition, and osteocalcin (OCN) gene expression were higher in MG-63 human osteosarcoma cell lines grown on PLLA/pDA/HA/Hep/BMP-2 than on control PLLA, PLLA/pDA/HA, and PLLA/pDA/Hep/BMP-2. In vivo studies using micro-computed tomography (micro-CT) also showed that PLLA/pDA/HA/Hep/BMP-2 screw exhibited greatest value of bone volume (BV) and bone volume/tissue volume (BV/TV) among samples. Histological evaluations with H&E and Von Kossa staining demonstrated that a combination of HA and BMP-2 contributed to the strong osseointegration.

Keywords

Acknowledgement

Supported by : Ministry of Trade, Industry and Energy (MOTIE)

References

  1. O.M. Bostman, H.K. Pihlajamaki, J. Bone Surg. Am. 80 (1998) 1791. https://doi.org/10.2106/00004623-199812000-00010
  2. J. Suganuma, H. Alexander, J. Appl. Biomater. 4 (1993) 13. https://doi.org/10.1002/jab.770040103
  3. S.J. Kim, D.H. Yang, H.J. Chun, G.T. Chae, J.W. Jang, Y.B. Shim, Macromol. Res. 21 (2013) 931. https://doi.org/10.1007/s13233-013-1110-x
  4. L.Macarini, P.Milillo,A.Mocci,R.Vinci, G.C. Ettorre,Radiol.Med.113 (2008)1185. https://doi.org/10.1007/s11547-008-0334-x
  5. L. Choi, S.J. Kwak, S.J. You, H.J. Chun, H.L. Kim, Y.B. Shim, M.S. Kim, K.D. Park, Macromol. Res. 20 (2012) 93. https://doi.org/10.1007/s13233-012-0005-6
  6. S.H. Oh, S.G. Kang, E.S. Kim, S.H. Cho, J.H. Lee, Biomaterials 24 (2003) 4011. https://doi.org/10.1016/S0142-9612(03)00284-9
  7. Y.-Q. Wang, J.-Y. Cai, Curr. Appl. Phys. 7 (2007) e108. https://doi.org/10.1016/j.cap.2006.11.027
  8. H. Qiu, J. Yang, P. Kodali, J. Koh, G.A. Ameer, Biomaterials 27 (2006) 5845. https://doi.org/10.1016/j.biomaterials.2006.07.042
  9. H. Yanagida, M. Okada, M. Masuda, M. Ueki, I. Narama, S. Kitao, Y. Koyama, T. Furuzono, K. Takakuda, J. Biosci. Bioeng. 108 (2009) 235. https://doi.org/10.1016/j.jbiosc.2009.04.003
  10. T. Furukawa, Y. Matsusue, T. Yasunaga, Y. Shikinami, M. Okuno, T. Nakamura, Biomaterials 21 (2000) 889. https://doi.org/10.1016/S0142-9612(99)00232-X
  11. Z. Wang, Y. Wang, Y. Ito, P. Zhang, X. Chen, Sci. Rep. 6 (2016) 20770. https://doi.org/10.1038/srep20770
  12. H. Ji, P.M. Marquis, Biomaterials 14 (1993) 64. https://doi.org/10.1016/0142-9612(93)90077-F
  13. T.J. Levingstone, M. Ardhaoui, K. Benyounis, L. Looney, J.T. Stokes, Surf. Coat. Tech. 283 (2015) 29. https://doi.org/10.1016/j.surfcoat.2015.10.044
  14. E.N. Bolbasov, M. Rybachuk, A.S. Golovkin, L.V. Antonova, E.V. Shesterikov, A.I. Malchikhina, V.A. Novikov, Y.G. Anissimov, S.I. Tverdokhlebov, Mater. Lett. 132 (2014) 281. https://doi.org/10.1016/j.matlet.2014.06.115
  15. H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Science 318 (2007) 426. https://doi.org/10.1126/science.1147241
  16. H.J. Cho, S.K. Perikamana, J.H. Lee, J. Lee, K.M. Lee, C.S. Shin, H. Shin, ACS Appl. Mater. Interfaces 6 (2014) 11225. https://doi.org/10.1021/am501391z
  17. C.Y. Chien, T.Y. Liu, W.H. Kuo, M.J. Wang, W.B. Tsai, J. Biomed. Mater. Res. A 101 (2013) 740.
  18. I. You, Y.C. Seo, H. Lee, RSC Adv. 4 (2014) 10330. https://doi.org/10.1039/c3ra47626j
  19. Y. Sun, Y. Deng, Z. Ye, S. Liang, Z. Tang, S. Wei, Colloids Surf. B Biointerfaces 111 (2013) 107. https://doi.org/10.1016/j.colsurfb.2013.05.037
  20. S.M. Kang, N.S. Hwang, J. Yeom, S.Y. Park, P.B. Messersmith, I.S. Choi, R. Langer, D.G. Anderson, H. Lee, Adv. Funct. Mater. 22 (2012) 2949. https://doi.org/10.1002/adfm.201200177
  21. Y.H. Ding, M. Floren, W. Tan, Biosurf. Biotribol. 2 (2016) 121. https://doi.org/10.1016/j.bsbt.2016.11.001
  22. Y. Liu, W.-Z. Qiu, H.-C. Yang, Y.-C. Qian, X.-J. Huang, Z.-K. Xu, RSC Adv. 5 (2015) 12922. https://doi.org/10.1039/C4RA16700G
  23. H. Daugaard, B. Elmengaard, J.E. Bechtold, T. Jensen, K. Soballe, J. Biomed. Mater. Res. A 92 (2010) 913.
  24. S. Sana, G. Manjunath, IOSR J. Dent. Med. Sci. 7 (2013) 15.
  25. P. Dinarvand, E. Seyedjafari, A. Shafiee, A.B. Jandaghi, A. Doostmohammadi, M. H. Fathi, S. Farhadian, M. Soleimani, ACS Appl. Mater. Interfaces 3 (2011) 4518. https://doi.org/10.1021/am201212u
  26. S.B. Goodman, Z. Yao, M. Keeney, F. Yang, Biomaterials 34 (2013) 3174. https://doi.org/10.1016/j.biomaterials.2013.01.074
  27. L. Polo-Corrales, M. Latorre-Esteves, J.E. Ramirez-Vick, J. Nanosci. Nanotechnol. 14 (2014) 15. https://doi.org/10.1166/jnn.2014.9127
  28. D.H. Yang, D.W. Lee, Y.D. Kwon, H.J. Kim, H.J. Chun, J.W. Jang, G. Khang, J. Tissue Eng. Regen. Med. 9 (2015) 1067. https://doi.org/10.1002/term.1973
  29. S. Huang, N. Liang, Y. Hu, X. Zhou, N. Abidi, Biomed. Res. Int. 2016 (2016) 2389895.
  30. Y.M. Shin, H.J. Shin, D.H. Yang, Y.J. Koh, H. Shin, H.J. Chun, J. Mater. Chem. B 5 (2017) 8725-8737.
  31. Y.B. Lee, Y.M. Shin, J.H. Lee, I. Jun, J.K. Kang, J.C. Park, H. Shin, Biomaterials 33 (2012) 8343. https://doi.org/10.1016/j.biomaterials.2012.08.011
  32. G.D. Venkatasubbu, S. Ramasamy, G.S. Avadhani, V. Ramakrishnan, J. Kumar, Powder Technol. 235 (2013) 437. https://doi.org/10.1016/j.powtec.2012.11.003
  33. X.L. Xu, H.Y. Yang, B. Ou, S.D. Lin, H. Wu, W. He, Q.C. Jiang, B.M. Luo, G.P. Li, Int. J. Oncol. 46 (2015) 2138. https://doi.org/10.3892/ijo.2015.2918
  34. A.S. Cole, J.E. Eastoe, Biochemistry and Oral Biology, 2nd ed., Butterworth-Heinemann, 1988.
  35. A. Sukumaran, P. Anand, H. Alghamdi, J.A. Jansen, Dental Implant Surface Enhancement and Osseointegration, InTech, 2011.
  36. K.L. Elias, R.L. Price, T.J. Webster, Biomaterials 23 (2002) 3279. https://doi.org/10.1016/S0142-9612(02)00087-X
  37. H. Li, N.R. Johnson, A. Usas, A. Lu, M. Poddar, Y. Wang, J. Huard, Stem Cells Transl. Med. 2 (2013) 667. https://doi.org/10.5966/sctm.2013-0027
  38. N.S. Gandhi, R.L. Mancera, Biochim. Biophys. Acta 1824 (2012) 1374. https://doi.org/10.1016/j.bbapap.2012.07.002
  39. R. Ruppert, E. Hoffmann, W. Sebald, Eur. J. Biochem. 237 (1996) 295. https://doi.org/10.1111/j.1432-1033.1996.0295n.x
  40. B. Li, T. Yoshii, A.E. Hafeman, J.S. Nyman, J.C. Wenke, S.A. Guelcher, Biomaterials 30 (2009) 6768. https://doi.org/10.1016/j.biomaterials.2009.08.038
  41. H.S. Yang, W.G. La, S.H. Bhang, J.Y. Jeon, J.H. Lee, B.S. Kim, Tissue Eng. A 16 (2010) 1225. https://doi.org/10.1089/ten.tea.2009.0390
  42. A. Krause, E.A. Cowles, G. Gronowicz, J. Biomed. Mater. Res. 52 (2000) 738. https://doi.org/10.1002/1097-4636(20001215)52:4<738::AID-JBM19>3.0.CO;2-F
  43. T. Goto, M. Yoshinari, S. Kobayashi, T. Tanaka, Biomed. Mater. Eng.14 (2004) 537.
  44. M. Rouahi, E. Champion, P. Hardouin, K. Anselme, Biomaterials 27 (2006) 2829. https://doi.org/10.1016/j.biomaterials.2006.01.001
  45. S. Midha, S. Murab, S. Ghosh, Biomaterials 97 (2016) 133. https://doi.org/10.1016/j.biomaterials.2016.04.020
  46. G.L. Lin, K.D. Hankenson, J. Cell. Biochem. 112 (2011) 3491. https://doi.org/10.1002/jcb.23287
  47. R. Aquino-Martinez, N. Artigas, B. Gamez, J.L. Rosa, F. Ventura, PLoS One 12 (2017)e0178158. https://doi.org/10.1371/journal.pone.0178158
  48. S. Chen, Y. Guo, R. Liu, S. Wu, J. Fang, B. Huang, Z. Li, Z. Chen, Z. Chen, Colloids Surf. B Biointerfaces 164 (2018) 58. https://doi.org/10.1016/j.colsurfb.2018.01.022
  49. D. Verma, K.S. Katti, D.R. Katti, Philos. Trans. A Math. Phys. Eng. Sci. 368 (2010) 2083. https://doi.org/10.1098/rsta.2010.0013
  50. S. Bodhak, S. Bose, A. Bandyopadhyay, Acta Biomater. 5 (2009) 2178. https://doi.org/10.1016/j.actbio.2009.02.023
  51. M.P. Hautamaki, A.J. Aho, P. Alander, J. Rekola, J. Gunn, N. Strandberg, P.K. Vallittu, Acta Orthop. 79 (2008) 555. https://doi.org/10.1080/17453670710015571
  52. J. Wu, Y.X. Bai, B.K. Wang, Angle Orthod. 79 (2009) 558.
  53. N.J. Shah, M.N. Hyder, J.S. Moskowitz, M.A. Quadir, S.W. Morton, H.J. Seeherman, R.F. Padera, M. Spector, P.T. Hammond, Sci. Transl. Med. 5 (2013) 191ra83.
  54. A.R. Amini, J.S. Wallace, S.P. Nukavarapu, J. Long Term Eff. Med. Implants 21 (2011) 93. https://doi.org/10.1615/JLongTermEffMedImplants.v21.i2.10
  55. M.S. Lopes, A.L. Jardini, R.M. Filho, Procedia Eng. 42 (2012) 1402. https://doi.org/10.1016/j.proeng.2012.07.534
  56. R. Florencio-Silva, G.R. Sasso, E. Sasso-Cerri, M.J. Simoes, P.S. Cerri, Biomed Res. Int. 2015 (2015) 421746.
  57. S.V. Dorozhkin, J. Funct. Biomater. 1 (2010) 22. https://doi.org/10.3390/jfb1010022

Cited by

  1. Poly(Dopamine) Coating on 3D-Printed Poly-Lactic-Co-Glycolic Acid/β-Tricalcium Phosphate Scaffolds for Bone Tissue Engineering vol.24, pp.23, 2018, https://doi.org/10.3390/molecules24234397
  2. Bioactive Coatings Based on Hydroxyapatite, Kanamycin, and Growth Factor for Biofilm Modulation vol.10, pp.2, 2018, https://doi.org/10.3390/antibiotics10020160