• Title/Summary/Keyword: water concentration

Search Result 11,922, Processing Time 0.034 seconds

Estimation of BOD Loading of Diffuse Pollution from Agricultural-Forestry Watersheds (농지-임야 유역의 비점원 발생 BOD 부하의 추정)

  • Kim, Geonha;Kwon, Sehyug
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.617-623
    • /
    • 2005
  • Forestry and agricultural land uses constitute 85% of Korea and these land uses are typically mixed in many watersheds. Biological Oxygen Demand (BOD) concentration is a primary factor for managing water qualities of the water resources in Korea. BOD loadings from diffuse sources, however, not well monitored yet. This study aims to assess BOD loadings from diffuse sources and their affecting factors to conserve quality of water resources. Event Mean Concentration (EMC) of BOD was calculated based on the monitoring data of forty rainfall events at four agricultural-forestry watersheds. Exceedence cumulative probability of BOD EMCs were plotted to show agricultural activities in a watershed impacts on the magnitude of EMCs. Prediction equation for each rainfall event was proposed to estimate BOD EMCs: $EMC_{BOD}(mg/L)=EXP(0.413+0.0000001157{\times}$(discharged runoff volume in $m^3$)+0.018${\times}$(ratio of agricultural land use to total watershed area).

Effect of Water Environment on the Mechanical Properties of Unidirectional CFRP (일방향 탄소섬유강화 복합재료의 기계적 성질에 미치는 수 환경의 영향)

  • 손선영;김재동;고성위
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.23-30
    • /
    • 1997
  • The purpose of this paper is to investigate the water environmental effect on the mechanical properties of carbon fiber/epoxy composites. Moisture concentration absorbed in CFRP under various water environment was calculated and degradation of mechanical properties for each wet composite laminates is investigated by performing the flexual and tensile test. The results show that moisture absorption is accelerated in higher temperature environment and under the same temperature sea water environment prompts more absorption than fresh water. As increasing the water temperature and moisture concentration tensile and flexual strength decreased as much as 25%-40% compared with dry condition.

  • PDF

Effective Thermal Conductivities of Al203 Nanoparticles Suspended in Water with Low Concentration less than 1 Vol. % (1%미만의 부피비를 가지는 알루미나 나노유체의 유효 열전도도)

  • Hwang, Kyo-Sik;Lee, Byeong-Ho;Kim, Jun-Ho;Jang, Seok-Pil
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.3
    • /
    • pp.1-5
    • /
    • 2007
  • In this paper, effective thermal conductivities of water-based Al203-nanofluids with low concentration from 0.01 vol. % to 0.3 vol. % are experimentally obtained by transient hot wire method (THWM). The water-based Al203-nanofluids are manufactured by two-step method which is widely used. To examine suspension and dispersion characteristics of the water-based A1203-nanofluids, Zeta potential as well as transmission electron micrograph (TEM) is observed. We confirm the manufactured Al203-nanofluids have good suspension and dispersion. The effective thermal conductivities of the water-based Al203-nanofluids with low concentration are enhanced up to 1.64% compared with that of DI water at $21^{\circ}C$. In addition, experimental results are compared with theoretical results from Jang and Choi model.

  • PDF

Removal of High Concentration Manganese in 2-stage Manganese Sand Filtration (2단 망간모래여과에 의한 고농도 망간 처리)

  • Kim, Chung H.;Yun, Jong S.;Lim, Jae L.;Kim, Seong S.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.503-508
    • /
    • 2007
  • Small scale D-water treatment plant(WTP) where has slow sand filtration was using raw water containing high concentration of manganese (> 2mg/l). The raw water was pre-chlorinated for oxidation of manganese and resulted in difficulty for filtration. Thus, sometimes manganese concentration and turbidity were over the water quality standard. Two stage rapid manganese sand filtration pilot plant which can treat $200m^3/d$ was operated to solve manganese problem in D-WTP. The removal rate of manganese and turbidity were about 38% and 84%, respectively without pH control of raw water. However, when pH of raw water was controlled to average 7.9 with NaOH solution, the removal rate of manganese and turbidity increased to 95.0% and 95.5%, respectively and the water quality of filtrate satisfied the water quality standard. Manganese content in sand was over 0.3mg/g which is Japan Water Association Guideline. The content in upper filter was 5~10 times more than that of middle and lower during an early operation but the content in middle and lower filter was increased more and more with increase of operation time. This result means that the oxidized manganese was adsorbed well in sand. Rapid manganese sand filter was backwashed periodically. The water quality of backwash wastewater was improved by sedimentation. Thus, turbidity and manganese concentration decreased from 29.4NTU to 3.09NTU and from 1.7mg/L to 0.26mg/L, respectively for one day. In Jar test of backwash wastewater with PAC(Poly-aluminum chloride), optimum dosage was 30mg/L. Because the turbidity of filtrate was high as 0.76NTU for early 5 minute after backwash, filter-to-waste should be used after backwash to prevent poor quality water.

A Study on the Automatic Measurement of Solid Content in Recycled Water in Ready Mixed Concrete Plant (레디믹스트 콘크리트 플랜트의 회수수 농도 측정 자동화에 관한 연구)

  • Choi, Young-Cheol;Moon, Gyu-Don;Cho, Bong-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.123-131
    • /
    • 2014
  • Whole amount of waste water, approximately 921.6 liter, for cleaning a ready mixed concrete truck should be used to produce concrete as a mixing water or cleaning water. Recycling water for concrete mixing contains solids, which cause decrease in slump, air and compressive strengths, so it may influence on poor concrete quality. Therefore, it has been maintained to use recycling water with less than 3 percent of solids. Since no evaluation system has been constructed to directly reflect on variability of recycling water from ready mixed concrete plants, it is necessary to develop "Automatic recycling solid measuring system" for quality controls in real time. In this research, sensors measuring waste water concentration in ultrasonic and inductance methods were developed, and automatic system using the sensors were established. The accuracy of measurement sensors developed for recycling water based on various conditions of concentration was proved, and application limits were evaluated. Also, concentration of recycling water using sensors developed from ready mixed concrete plant was measured, and curing method verified the accuracy of the sensors. Moreover, measurement sensors for recycling water in various locations were installed to evaluate the effects on measuring method and spots. The automatic measuring system for recycling water concentration, which is developed in the research, will contribute to improve concrete quality safety through reliable solids maintenance.

Comparison of sodium permanganate and sodium hypochlorite on algae-containing water: algae cell integrity and byproduct formation (조류가 발생한 수질에 과망간산나트륨과 차아염소산나트륨이 세포 손상도 및 부산물 발생에 미치는 영향 비교)

  • Yang, Boram;Hong, Seok Won;Choi, Jae-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.5
    • /
    • pp.249-260
    • /
    • 2022
  • The effect of permanganate oxidation was investigated as water treatment strategy with a focus on comparing the reaction characteristics of NaOCl and sodium permanganate (NaMnO4) in algae (Monoraphidium sp., Micractinium inermum, Microcystis aeruginosa)-contained water. Flow cytometry explained that chlorine exposure easily damaged algae cells. Damaged algae cells release intracellular organic matter, which increases the concentration of organic matter in the water, which is higher than by NaMnO4. The oxidation reaction resulted in the release of toxin (microcystin-LR, MC-LR) in water, and the reaction of algal organic matter with NaOCl resulted in trihalomethanes (THMs) concentration increase. The oxidation results by NaMnO4 significantly improved the concentration reduction of THMs and MC-LR. Therefore, this study suggests that NaMnO4 is effective as a pre-oxidant for reducing algae damage and byproducts in water treatment process.

Removal study of As (V), Pb (II), and Cd (II) metal ions from aqueous solution by emulsion liquid membrane

  • Dohare, Rajeev K.;Agarwal, Vishal;Choudhary, Naresh K.;Imdad, Sameer;Singh, Kailash;Agarwal, Madhu
    • Membrane and Water Treatment
    • /
    • v.13 no.4
    • /
    • pp.201-208
    • /
    • 2022
  • Emulsion Liquid Membrane (ELM) is a prominent technique for the separation of heavy metal ions from wastewater due to the fast extraction and is a single-stage operation of stripping-extraction. The selection of the components (Surfactant and Carrier) of ELM is a very significant step for its preparation. In the ELM technique, the primary water- in-oil (W/O) emulsion is emulsified in water to produce water-in-oil-in-water (W/O/W) emulsion. The water in oil emulsion was prepared by mixing the membrane phase and internal phase. To prepare the membrane phase, the extractant D2EHPA (di-2-ethylhexylphosphoric acid) was used as a mobile carrier, Span-80 as a surfactant, and Paraffin as a diluent. Moreover, the internal (receiving) phase was prepared by dissolving sulphuric acid in water. Di-(2- ethylhexyl) phosphoric acid such as surfactant concentration, carrier concentration, sulphuric acid concentration in the receiving (internal) phase, agitation time (emulsion phase and feed phase), the volume ratio of the membrane phase to the receiving phase, the volume ratio of the external feed phase to the primary water-in-oil emulsion and pH of feed were studied on the percentage extraction of metal ions at 20℃. The results show that it is possible to remove 78% for As(V), 98% for Cd(II), and 99% for Pb(II). Emulsion Liquid Membrane (ELM) is a well-known technique for separating heavy metal ions from wastewater due to the fast extraction and is a single-stage operation of stripping-extraction. The selection of ELM components (Surfactant and Carrier) is a very significant step in its preparation. In the ELM technique, the primary water-in-oil (W/O) emulsion is emulsified to produce water-in-oil-in-water (W/O/W) emulsion. The water in the oil emulsion was prepared by mixing the membrane and internal phases. The extractant D2EHPA (di-2-ethylhexylphosphoric acid) was used as a mobile carrier, Span-80 as a surfactant, and Paraffin as a diluent. Moreover, the internal (receiving) phase was prepared by dissolving sulphuric acid in water. Di-(2-ethylhexyl) phosphoric acid such as surfactant concentration, carrier concentration, sulphuric acid concentration in the receiving (internal) phase, agitation time (emulsion phase and feed phase), the volume ratio of the membrane phase to the receiving phase, the volume ratio of the external feed phase to the primary water-in-oil emulsion and pH of feed were studied on the percentage extraction of metal ions at 20℃. The results show that it is possible to remove 78% for As(V), 98% for Cd(II), and 99% for Pb(II).

Quantitative Visualization of Dissolved Oxygen Concentration Field in Micro Flows using PtOEP/PS Membrane (마이크로 유동에서 PtOEP/PS 박막을 이용한 용존 산소 농도장의 정량적 가시화)

  • Song, Dae-Hun;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.1
    • /
    • pp.36-41
    • /
    • 2011
  • It is highly needed to measure the dissolved oxygen (DO) concentration field in water for a variety of purposes such as biological, industrial, environmental monitoring and medical application. Application of PSP (Pressure Sensitive Paint) which is sensitive to oxygen concentration has been carried out to measure DO concentration field using PtOEP/PS film and intensity based method under the UV-LEDs illumination. A micro round water jet having 100% of DO was obliquely impinged on to a PtOEP/PS film coated plate placed in a 0% of DO water container. DO concentration fields on the impinging plate were quantitatively visualized with a $2.94\;{\mu}m$ of spatial resolution. Through pixel-by-pixel calibration, uncertainty of each pixel by different sensitivity, different dye concentration and non-uniformity of illumination was removed. It is demonstrated that the high DO concentration region was coincided with the impingement area. The DO concentration gradient due to DO diffusion was affected by Reynolds number.

Impact Assessment of Liquid Manure Application on Soil and Shallow Groundwater in Poplar Experimental Site (액비 시비에 따른 포플러시험포 토양수 및 천층지하수 수질 영향 평가)

  • Hong, Eun-Mi;Choi, Jin-Yong;Nam, Won-Ho;Lee, Sang-Hyun;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.25-35
    • /
    • 2015
  • As livestock manure treatment is becoming a problem, manure application in forest plantation is recommended as an alternative. In this study, to investigate the impact due to liquid manure application in forest plantation, soil, soil water and shallow groundwater quality had been monitored in poplar experimental site where the liquid manure (LM) was applied. Water samples were collected weekly during growing season (April to October) from 2008 to 2011. From the monitoring results, phosphorus concentration in the soil and soil water had no significant difference between LM and control plots. $NO_3$-N concentration of soil water in LM, however, showed higher concentration (13.6 mg/l at 40 cm, 35.1 mg/l at 80 cm) than control plot (1.5 mg/l at 40 cm, 0.5 mg/l at 80 cm). In case of shallow groundwater quality, pH, heavy metal, etc. were satisfied to the national agricultural water quality standard of groundwater and there were no significant difference between upstream and downstream. The $NO_3$-N concentration of shallow groundwater was also not exceeded the national drinking water standard. However, $NO_3$-N concentration in soil water and downstream of shallow groundwater had increased in 2011 when non-composted LM was applied mostly in non-growing season of tree (September). From the results, it is important to control nitrogen source, application time and decomposed or not when LM is applied. In addition, to investigate nitrate source, further long-term monitoring and modelling could be necessary.

Sorption Kinetics of $Sr_{2+}$in Citric Acid-Water systems (Citric acid-water 혼합시스템에서 $Sr_{2+}$의 흡착특성)

  • 김계남;김진완;한운우;원휘준;오원진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.133-136
    • /
    • 2000
  • Soil decontamination process was conducted to study adsorption and modeling characteristic of Sr$^{2+}$ ion using citric acid and water system with TRIGA soil. When the concentration of citric acid was increased, the BTC of Sr$^{2+}$ ion was to be closed to the BTC of $^3$$H_2O$ at experiments of soil adsorption. Beside, when the concentration of citric acid was under 0.01M Sr$^{2+}$ ion, BTLs was asymmetry. It was characteristic of nonequilibrium adsorption. R and $K_{p}$ , were decreased to be increased the concentration of citric acid. Asymmetry modeling was nearly the same to be compare with symmetry modeling in decontamination process, when the concentration of citric acid was decreased. Result of experiment was agree with asymmetry and symmetry model, when the concentration of citric acid was increased.eased.

  • PDF