• Title/Summary/Keyword: water/cement mixing ratio

Search Result 219, Processing Time 0.027 seconds

Study on the Mixing Design Method of Concrete Using Finely Ground Granulated Furnace Blast Slag (고로슬래그 미분말 혼입 콘크리트의 배합설계방법에 관한 연구)

  • Shin, Sung-Woo;Lee, Han-Seung;Han, Geum-Wook;Kim, Jung-Sik;Park, Gui-Suk;Kang, Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.625-630
    • /
    • 1999
  • This study was carried out to investigate quantitatively the relatonship between the water binder ratio and the concrete strength using finely ground granulated furnace blast slag to apply f 0.5% type admixture. The experimental parameters are water-binder ratio (40, 45, 50, 55, 60%) and slag contents(0, 10, 20, 30%). As a result, it can make that the water-binder ratio of concrete contented slag can be calculated by equation using relationship between compressive strength of concrete and water-binder ratio which is consisted of mixing strength and cement strength K.

  • PDF

Characteristic of mixing rate of mud flat on Mortar in W/C 70% (W/C 70%인 모르타르에서의 갯벌 혼입률에 따른 특성)

  • Lee, Heung-Yeol;An, So-hyun;Yang, Seong-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.30-31
    • /
    • 2016
  • Recently in the construction site is required various performance of mortar to deal with reliability, economy. Especially of environment-friendly, saving resources and high performance of mortar it began to require improvement of performance. Therefore, in this study, a series of tests was designed to develop a using mud flat mortar in view of the high absorption rate of tidal flats, to fix the water cement ratio to 70%. The mixing ratio were 10:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6 of fine aggregate and mud flats. Compared the flow value, chloride content, compressive strength, tensile strength, and workability of fine aggregate the substituted mud flat mortar and basic cement mortar, present the basic data on the characteristics and effects of mud flat mortar.

  • PDF

Experimental Studies on the Properties of Mortars by Foaming Agent (기포제(起泡劑)를 사용(使用)한 모르터의 제성질(諸性質)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Ahn, Young Durg;Kang, Sin Up
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.2
    • /
    • pp.292-308
    • /
    • 1985
  • This study was performed to obtain the basic data which can be applied to the use of foamed mortars using foaming agent of prefoamed type. The data was based on the properties of foamed mortars depending upon various mixing ratios of cement to fine aggregates, flow values and foam-cement ratio to compare those of cement mortar. The results obtained were summarized as follow; 1. At the mixing ratio of 1:0 and the foam-cement ratio of 6.00%, the increasing rate of water-cement ratio was 25% by flow $200{\pm}5mm$, 28% by flow $240{\pm}5mm$ and 32% by flow $280{\pm}5mm$. But it decreased as the mixing ratio gets poorer. The result showed that water amount increased because of the high viscosity caused by the increase of foam-cement ratio. The decrease of water-cement ratio was the greatest when the foam-cement ratio was 1.50%. 2. Absolute aridity bulk density of foamed mortars decreased with the increase of foam-cement ratio and the decrease of flow values. 3. Generally, compressive, tensile and bending strenghs of foamed mortars decreased with the decrease of flow values and the increase of foam-cement ratio. 4. The compressive strength was in proportion to tensile strength. It was estimated that the compressive strength was 8.8 times of tensile strength. The compressive strength was in proportion to bending strength. It was estimated that the compressive strength was 4.0 times of bending strength. The bending strength was in proportion to tensile strength. It was estimated that the bending strength was 2.1 times of tensile strength. 5. At the mixing ratio of 1:1 the lowest absorption rates were showed by foamed mortars, respectively. It was significantly higher at the early stage of immersed water.

  • PDF

Properties of Eco-friendly Artificial Stone according to the mixing ratio of Geopolymer-based recycled Aggregate (지오폴리머 기반 순환골재 혼입율에 따른 친환경성 인조석재의 특성)

  • Kyung, Seok-Hyun;Choi, Byung-Cheol;Kang, Yeon-Woo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.126-127
    • /
    • 2020
  • Recently, as interest in environmental issues increases, minimizing carbon dioxide generated during cement manufacturing is a problem to be solved. In order to solve such a problem, it is required to use an industrial by-product of recycled aggregate, blast furnace slag, and circulating fluidized bed boiler fly ash to replace it on the basis of geopolymer(=cementless). This study examines the characteristics of eco-friendly artificial stone according to the mixing ratio of geopolymer-based recycled aggregate. As a result of the experiment, when the addition rate of the alkali stimulant was 15% and the mixing ratio of the circulating aggregate was 70%, the flexural strength and compressive strength were the highest. Density and water absorption decreased as density of circulating aggregates increased and water absorption increased. However, when the mixing ratio of the circulating aggregate exceeded 70%, the flexural strength and compressive strength decreased. Therefore, in order to obtain strengths meeting the KS standards, the mixing ratio of recycled aggregate was set to 70%, and artificial stone was manufactured using industrial by-products.

  • PDF

A Quantitative Analysis on Feature of Hydrate Affecting Early-Age Strength (콘크리트 초기강도에 영향을 미치는 수화물의 정량분석에 관한 연구)

  • Song Tae Hyeob;Lee Mun Hwan;Lee Sea Hyun;Park Dong Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.583-586
    • /
    • 2005
  • Strength of concrete is very important factor in design and quality management and may represent overall quality of concrete. Such strength of concrete may differ depending on amount of cement mixed, water and fine aggregate ratio. Classic concrete products have been produced mainly with ordinary portland cement(hereinafter 'cement'), water and fine aggregate as shown above, but various additives and mixture materials have been used for concrete manufacturing, along with development of high functional concrete and diversification of structures. Various kinds of chemical mixtures agents and mixture materials have been used as it requires concretes with other features which cannot be solved with existing materials only, such as high strength, high flexibility and no-separation in the water. Such addition of various mixture agents may cause change in cement hydrate, affecting strength. Hydration of cement is the process of producing potassium hydroxide, C-S-H, C-A-H and Ettringite, while causing heat generation reaction after it is mixed with water, and generation amounts of such hydrates play lots of roles in condensation and hardening. This study aims to analyze its strength and features with hydrates by making specimen according to curing temperature, types of mixture agent, mixing ratio and ages and by analyzing such hydrates in order to analyze role of cement hydrate on early strength of concrete.

  • PDF

A Fundamental Study on the Hydration and micro Structure of high Strength Concrete Used by high Calcium Sulfate Cement (고황산염 시멘트를 이용한 고강도 콘크리트의 수화거동과 미세구조에 관한 기초적 연구)

  • 박승범;임창덕
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.99-105
    • /
    • 1993
  • The purpose of this fundamental study is to investigate the mechanism of high strength concrete using the high calcium sulfate cement from a point of view in cement hydration and micro structure. As a results, it was found that the internal pores of concrete are decreased by using the high calcium sulfate cement, because the hydrates of Ettringite which is densified in structure is much formed in early ages at steam curing. In addition to the ettringite needs the 32 times of free water formed mixing water for hydration. This effect are not only decreased the water to cement ratio and also increase to comp, strength of concrete. It was conclude that these above the two facts are the main mechanism of high strength concrete using high calcium sulfate cement.

  • PDF

Ready mixed concrete behavior of granulated blast furnace slag contained cement

  • Karim, M. Razaul;Islam, A.B.M. Saiful;Chowdhury, Faisal I.;Rehman, Sarder Kashif Ur;Islam, Md. Rabiul
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.139-147
    • /
    • 2018
  • Due to enhanced construction requirement, ready mixed concrete are being popular day by day. The current study aimed to develop ready mixed concrete using GBFS contained cement and determine its properties of fresh and hardened states. A real scale experiment was set up in a ready mixed plant for measuring workability and compressive strength. The workability was tested after mixing (within 5 minutes), 30, 60, 90, 120 and 150 minutes of the running of bulk carrier. The ready mixed carrier employed spinning motion i.e., rotating around its axis with 20 RPM and running on road with 1km/h speed. The mixing ratio of cement: sand:gravel, water to cement ratio, super plasticizer were, 1:1.73:2.47, 0.40 and 6% of cement, respectively. The chemical composition of raw material was determined using XRF and the properties of cements were measured according to ASTM standards. The experimental results confirm that the cement with composition of 6.89% of GBFS, 4% of Gypsum and 89.11% of clinker showed the good compressive strength and workability of concrete after 150 minutes of the spinning motion in bulk carrier.

Prediction of compressive strength of slag concrete using a blended cement hydration model

  • Wang, Xiao-Yong;Lee, Han-Seung
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.247-262
    • /
    • 2014
  • Partial replacement of Portland cement by slag can reduce the energy consumption and $CO_2$ emission therefore is beneficial to circular economy and sustainable development. Compressive strength is the most important engineering property of concrete. This paper presents a numerical procedure to predict the development of compressive strength of slag blended concrete. This numerical procedure starts with a kinetic hydration model for cement-slag blends by considering the production of calcium hydroxide in cement hydration and its consumption in slag reactions. Reaction degrees of cement slag are obtained as accompanied results from the hydration model. Gel-space ratio of hardening slag blended concrete is determined using reaction degrees of cement and slag, mixing proportions of concrete, and volume stoichiometries of cement hydration and slag reaction. Furthermore, the development of compressive strength is evaluated through Powers' gel-space ratio theory considering the contributions of cement hydration and slag reaction. The proposed model is verified through experimental data on concrete with different water-to-binder ratios and slag substitution ratios.

Basic Study on Development of Forest Road Pavement Using Eco-Friendly Method (친환경 임도포장공법 개발을 위한 기초연구)

  • Oh, Sewook;Lee, Gilho;Kim, Donggeun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.6
    • /
    • pp.31-38
    • /
    • 2013
  • This study carried out fundamental study on the forest road pavement method of cementing the ground using the compaction equipment after laying by mixing with eco-friendly stabilizer, natural soil and water. Target strength of pavement was set to 2.0MPa and the specimen was produced per mixing ratio of cement, kinds of natural soil and curing period to evaluate the durability and unconfined compressive strength. Unconfined compressive strength test was conducted to compare strength by producing the test specimen mixing environment-friendly cement as well as the test specimen mixing cement with the same mixing ratio. To evaluate the durability, surface abrasion test and water flow resistance test were conducted. In addition, SB and GB tests were conducted using iron marble and golf ball to evaluate the walking satisfaction since it can be used by visitors due to the feature of forest road.

Durability in Concrete Containing Limestone Powder and Slag Powder (석회석 미분말과 슬래그 미분말을 혼합한 콘크리트의 내구성)

  • 구봉근;이재범;이현석;박주원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.82-85
    • /
    • 2003
  • This study is to investigate durability in concrete containing slag powder and limestone power. The variables are the substitution ratio of slag powder and limestone powder. In order to study the effect of slag powder and limestone powder, all mixtures were prepared at a fixed water/cement ratio, slump, and entrained air quantity. When concrete containing slag powder is mixing rate 40%, durability appeared the highest in general. When concrete containing limestone powder is mixing rate 10% in all experiments, the most suitable result appeared.

  • PDF