• Title/Summary/Keyword: water/binder ratio

Search Result 487, Processing Time 0.024 seconds

The mechanical properties of Reactive Powder Concrete using Ternary Pozzolanic Materials exposed to high Temperature (3성분계 포졸란재를 이용한 반응성 분체 콘크리트(RPC)의 고온특성)

  • Janchivdorj, Khulgadai;So, Hyoung-Seok;Yi, Je-Bang;So, Seung-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.68-71
    • /
    • 2013
  • Reactive Powder Concrete (RPC) is an ultra high strength and high ductility cement-based composite material and has shown some promise as a new generation concrete in construction field. It is characterized by a silica fume-cement mixture with very low water-binder (w/b) ratio and very dense microstructure, which is formed using various powders such as cement, silica fume and very fine quartz sand (0.15~0.4mm) instead of ordinary coarse aggregate. However, the unit weight of cement in RPC is as high as 900~1,000 kg/㎥ due to the use of very fine sand instead of coarse aggregate, and a large volume of relatively expensive silica fume as a high reactivity pozzolan is also used, which is not produced in Korea and thus must be imported. Since the density of RPC has a heavy weight at 2.5~3.0 g/㎤. In this study, the modified RPC was made by the combination of ternary pozzolanic materials such as blast furnace slag and fly ash, silica fume in order to economically and practically feasible for Korea's situation. The fire resistance and structural behavior of the modified RPC exposed to high temperature were investigated.

  • PDF

A predictive model for compressive strength of waste LCD glass concrete by nonlinear-multivariate regression

  • Wang, C.C.;Chen, T.T.;Wang, H.Y.;Huang, Chi
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.531-545
    • /
    • 2014
  • The purpose of this paper is to develop a prediction model for the compressive strength of waste LCD glass applied in concrete by analyzing a series of laboratory test results, which were obtained in our previous study. The hyperbolic function was used to perform the nonlinear-multivariate regression analysis of the compressive strength prediction model with the following parameters: water-binder ratio w/b, curing age t, and waste glass content G. According to the relative regression analysis, the compressive strength prediction model is developed. The calculated results are in accord with the laboratory measured data, which are the concrete compressive strengths of different mix proportions. In addition, a coefficient of determination $R^2$ value between 0.93 and 0.96 and a mean absolute percentage error MAPE between 5.4% and 8.4% were obtained by regression analysis using the predicted compressive analysis value, and the test results are also excellent. Therefore, the predicted results for compressive strength are highly accurate for waste LCD glass applied in concrete. Additionally, this predicted model exhibits a good predictive capacity when employed to calculate the compressive strength of washed glass sand concrete.

A new principles for implementation and operation of foundations for machines: A review of recent advances

  • Golewski, Grzegorz Ludwik
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.317-327
    • /
    • 2019
  • The aim of this paper is to present the most important issues on the implementation, operation and maintenance of foundation for machines. The article presents the newest solutions both in terms of technology implementation as well as materials used in construction of such structures. Foundations for machines are special building structures used to transfer loads from an operating machine to the subsoil. The purpose of these foundations is not just to transfer loads, but also to reduce vibrations occurring during operation of the machine, i.e. their damping and preventing redistribution to other elements of the building. It should be noted that foundations for machines (particularly foundations for hammers) are the most dynamically loaded building structures. For these reasons, they require precise static and dynamic calculations, accuracy in their implementation and care for them after they have been made. Therefore, the paper in detail present the guidelines regarding: design, construction and maintenance of structures of this type. Furthermore, the most important parameters and characteristics of materials used for the construction of these foundations are described. As a result of the conducted analyzes, it was found that the concrete mix, in foundations for machines, should have a low water/binder ratio. For its execution, it is necessary to use broken aggregates from igneous rocks and binders modified with mineral additives and chemical admixtures. On the other hand, the reinforcement of composites should contain a large amount of structural reinforcement to prevent shrinkage cracks.

Prediction of compressive strength of GGBS based concrete using RVM

  • Prasanna, P.K.;Ramachandra Murthy, A.;Srinivasu, K.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.691-700
    • /
    • 2018
  • Ground granulated blast furnace slag (GGBS) is a by product obtained from iron and steel industries, useful in the design and development of high quality cement paste/mortar and concrete. This paper investigates the applicability of relevance vector machine (RVM) based regression model to predict the compressive strength of various GGBS based concrete mixes. Compressive strength data for various GGBS based concrete mixes has been obtained by considering the effect of water binder ratio and steel fibres. RVM is a machine learning technique which employs Bayesian inference to obtain parsimonious solutions for regression and classification. The RVM is an extension of support vector machine which couples probabilistic classification and regression. RVM is established based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Compressive strength model has been developed by using MATLAB software for training and prediction. About 70% of the data has been used for development of RVM model and 30% of the data is used for validation. The predicted compressive strength for GGBS based concrete mixes is found to be in very good agreement with those of the corresponding experimental observations.

Effects of Curing Conditions on Compressive Strength and Tensile Behavior of Alkali-Active Slag-Based Fiber Reinforced Composites (양생 조건이 알칼리 활성 슬래그 기반 섬유보강 복합재료의 압축강도와 인장거동에 미치는 영향)

  • Park, Se-Eon;Choi, Jeong-Il;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.260-267
    • /
    • 2021
  • The purpose of this study was to experimentally investigate the effects of curing methods on the compressive strength and tensile behavior of alkali-activated slag-based fiber-reinforced composite with a water-to-binder ratio of 15%. Three kinds of mixtures according to the curing conditions were prepared and compressive strength and tension tests were performed. Test results showed that the compressive strength and the first cracking strength of composites decreased when high temperature curing and air curing were adopted, while tensile strain capacity of composites increased. It was also observed that crack spacing and crack width of composites decreased by applying high temperature and air curing.

Prediction of concrete pumping based on correlation between slump and rheological properties

  • Lee, Jung Soo;Kim, Eun Sung;Jang, Kyong Pil;Park, Chan Kyu;Kwon, Seung Hee
    • Advances in concrete construction
    • /
    • v.13 no.5
    • /
    • pp.395-410
    • /
    • 2022
  • This study collected the results of material tests and full-scale pumping tests using 127 types of concrete mixtures with compressive strength ranging from 24 to 200 MPa. The results of 242 material tests showed high correlations between the viscosity of the lubricating layer and concrete, between the slump and the yield stress of concrete, between the water-binder ratio and the viscosity of lubricating layer, and between the time required to reach 500 mm of slump flow and concrete viscosity. Based on these correlations, pumpability was predicted using 101 pumping test conditions, and their accuracy was compared to the actual test results. When the rheological properties of concrete and the lubricating layer were directly measured, the prediction result showed the highest accuracy. A high accuracy can be achieved when the measured viscosity of the lubricating layer, a key determinant of concrete pumpability, is reflected in the prediction of pumpability. When measuring rheological properties is difficult, the slump test can be used to quantitatively predict the pumpability despite the lower accuracy than those of other prediction methods.

Effect of fly ash and metakaolin on the properties of fiber-reinforced cementitious composites: A factorial design approach

  • Sonebi, Mohammed;Abdalqader, Ahmed;Fayyad, Tahreer;Amaziane, Sofiane;El-Khatib, Jamal
    • Computers and Concrete
    • /
    • v.29 no.5
    • /
    • pp.347-360
    • /
    • 2022
  • Fiber-reinforced cementitious composites (FRCC) have emerged as a response to the calls for strong, ductile and sustainable concrete mixes. FRCC has shown outstanding mechanical properties and ductility where special fibres are used in the mixes to give it the strength and the ability to exhibit strain hardening. With the possibility of designing the FRCC mixes to include sustainable constituents and by-products materials such as fly ash, FRCC started to emerge as a green alternative as well. To be able to design mixes that achieve these conflicting properties in concrete, there is a need to understand the composition effect on FRCC and optimize these compositions. Therefore, this paper aims to investigate the influence of FRCC compositions on the properties of fresh and hardened of FRCC and then to optimize these mix compositions using factorial design approach. Three factors, water-to-binder ratio (w/b), mineral admixtures (total of fly ash and metakaolin by cement content (MAR)), and metakaolin content (MK), were investigated to determine their effects on the properties of fresh and hardened FRCC. The results show the importance of combining both FA and MK in obtaining a satisfactory fresh and mechanical properties of FRCC. Models were suggested to elucidate the role of the studied factors and a method for optimization was proposed.

Predicting the compressive strength of SCC containing nano silica using surrogate machine learning algorithms

  • Neeraj Kumar Shukla;Aman Garg;Javed Bhutto;Mona Aggarwal;Mohamed Abbas;Hany S. Hussein;Rajesh Verma;T.M. Yunus Khan
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.373-381
    • /
    • 2023
  • Fly ash, granulated blast furnace slag, marble waste powder, etc. are just some of the by-products of other sectors that the construction industry is looking to include into the many types of concrete they produce. This research seeks to use surrogate machine learning methods to forecast the compressive strength of self-compacting concrete. The surrogate models were developed using Gradient Boosting Machine (GBM), Support Vector Machine (SVM), Random Forest (RF), and Gaussian Process Regression (GPR) techniques. Compressive strength is used as the output variable, with nano silica content, cement content, coarse aggregate content, fine aggregate content, superplasticizer, curing duration, and water-binder ratio as input variables. Of the four models, GBM had the highest accuracy in determining the compressive strength of SCC. The concrete's compressive strength is worst predicted by GPR. Compressive strength of SCC with nano silica is found to be most affected by curing time and least by fine aggregate.

A Study on High Temperature properties of Kaolin-Phosphate-Water Systems (카올린-인산염-물계의 고온특성에 관한 연구)

  • 박금길;장영재
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.4
    • /
    • pp.229-236
    • /
    • 1981
  • This study deals with the high temperature (600-135$0^{\circ}C$) properties of Kaolin-Phosphate-Water systems. Phosphoric acid, mono aluminum phosphate, mono ammonium phosphate, the mixture of phosphoric acid and mono aluminum phosphate, and the mixture of phosphoric acid and mono ammonium phosphate were used to characterize the M.O.R of the systems with to quantity of phosphates and firing temperature. Firing shrinkage, creeptest, DTA, TGA, and X-ray diffraction patterns were also measured in order to investigate the factors of strengthening. The resules of the experiments are as follows: 1. Linear shrinkage of kaolin-phosphate systems become larger as the firing temperature rise, and generally in the firing temperature of $600^{\circ}C$ and 100$0^{\circ}C$ the test pieces with phosphate binder show larger then Kaolin-Water system in linear shrinkage and reversed trends were found at 120$0^{\circ}C$ and 135$0^{\circ}C$. 2. Cold M.O.R. of kaolin-phosphate systems show higher trends in strength as the firing temperature rise. Comparing M.O.R. of test pieces after firing at 135$0^{\circ}C$, the mixture of phosphoric acid-mono aluminum phosphate, and phosphoric acid mono ammonium phosphate systems show higher strength than kaolin-mono aluminum phosphate system which widely used, and it shows highest strength when the mole ratio of phosphoric acid and mono ammonium phosphate is 1:1 among the test pieces of kaolin-phosphate systems. 3. The refractoriness of kaolin-phosphate systems are more deteriorated than Kaolin-Water system, and generally, the more addition of phosphate, the lower the refractoriness, however in the range of 4-8% phosphate addition, the difference of the fusion temperature is about 7$0^{\circ}C$. 4. The test pieces of T1 and T2 in creep test were same or even higher than kaolin-water system when 6% of phosphoric acid-mono ammonium phosphate was added to kaolin. 5. In case where the phosphoric acid-mono ammonium phosphate was added to kaolin in mole ratio 1:1 the cold M.O.R., after firing at 135$0^{\circ}C$, refractoriness and $T_2$ in creep test show better results than kaolin-mono-aluminum phosphate system which is widely used. 6. Phosphoric acid and mono ammonium phosphate react with kaolin in temperature over 100$0^{\circ}C$, and it forms aluminum phosphate.

  • PDF

The Characteristics of Manufacture Filter Media for Water Treatment Using Mixture Response with Ash and Food Waste (연소재 및 식품폐기물의 혼합 반응에 따른 수처리 여과재 제조 특성)

  • Park, Seung-Do;Lee, Won-Ho;Lee, Min-Hee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.5
    • /
    • pp.5-12
    • /
    • 2018
  • The porosity formation by the addition of additives was found to be the highest in the case of aluminum powder 3% and $Ca(OH)_2$ 2% under the condition that strength was maintained. The optimum mixing ratio of the binder was shown to be the most effective at (Ash+Food waste+clay):(water glass+colloidal silica) 7:3, and the temperature response is most economical and effective at $1,000^{\circ}C$. The optimal mixing ratio is the strength in 30% of ash, 30% of clay and 10% of food waste, which is the effective in non-point pollution water treatment. Filter media produced under optimal mixing conditions were analyzed as $SiO_2$ 65.8%, density $1.4g/cm^3$, porosity 25.6%, pH 9.8, and no hazardous substances were detected. As a result of the filtration of the water treatment, the mean concentration of the filtered SS was $14.06mg/{\ell}$, and the removal efficiency of SS was 90%, the recovery rate of the reversal is 97.1%. This enables the development of filter media considering economic efficiency and efficiency as well as the utilization of waste resources, enabling high value added of waste resources.