• Title/Summary/Keyword: waste-water

Search Result 2,962, Processing Time 0.029 seconds

The structural and non-linear dynamic analysis for radioactive waste container

  • Yu-Yu Shen;Kuei-Jen Cheng;Hsoung-Wei Chou
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3010-3016
    • /
    • 2023
  • In recent years, the development of radioactive waste containers for nuclear facility decommissioning and dismantling is a critical issue because the Taiwan domestic boiling water reactor nuclear power plant is going to be decommissioned. The main purpose of this research is to design a metal container that meets the structural requirements of related regulations. At first, the shielding analysis was performed by varying dimensions of radioactive waste to determine the storage efficiency of the container. Then, a series of structural analyses for operational and accidental conditions of the container with full load were conducted, such as lifting, stacking, and drop impact conditions. On the other hand, the field drop impact tests were carried out to ensure structural integrity. The present research demonstrates the structural safety of the developed container for decommissioned nuclear facilities in Taiwan.

Establishment on the Monitoring System for Unsaturated Characteristics Variation in a Mine Waste-Dump Slope (광산폐기물 적치사면의 불포화 특성변화 모니터링 시스템 구축)

  • Song, Young-Suk;Jung, In-Keun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.3
    • /
    • pp.49-55
    • /
    • 2016
  • Field measurement units and a system were constructed and installed in a waste-dump slope at the Imgi mine to investigate and analyze the variations in the unsaturated characteristics of the soil. The field instrumentation system was composed of a data acquisition system (DAS), a solar system, and measuring sensors. The rainfall, matric suction, and volumetric water contents were continuously measured from the units in the instrumented site. The variations in matric suction and volumetric water content were primarily affected by the rainfall intensity. At the surface of the slope, the largest increase and decrease in the changes in matric suction and volumetric water content were observed during the wetting and drying processes, respectively. Also, the matric suction and volumetric water content were 5-35 kPa and 0.12-0.24, respectively. However, the ground water level was not suddenly increased just after rainfall but gradually increased after 2 or 3 days later.

Melting and draining tests on glass waste form for the immobilization of Cs, Sr, and rare-earth nuclides using a cold-crucible induction melting system

  • Choi, Jung-Hoon;Lee, Byeonggwan;Lee, Ki-Rak;Kang, Hyun Woo;Eom, Hyeon Jin;Park, Hwan-Seo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1206-1212
    • /
    • 2022
  • Cold-crucible induction melting (CCIM) technology has been intensively studied as an advanced vitrification process for the immobilization of highly radioactive waste. This technology uses high-frequency induction to melt a glass matrix and waste, while the outer surface of the crucible is water-cooled, resulting in the formation of a frozen glass layer (skull). In this study, for the fabrication of borosilicate glass waste form, CCIM operation test with 60 kg of glass per batch was conducted using surrogate wastes composed of Cs, Sr, and Nd as a representative of highly radioactive nuclides generated during spent nuclear fuel management. A 60 kg-scale glass waste form was successfully fabricated through melting and draining processes using a CCIM system, and its physicochemical properties were analyzed. In particular, to enhance the controllability and reliability of the draining process, an air-cooling drain control method that can control draining through air-cooling near drain holes was developed, and its validity for draining control was verified. The method can offer controllability on various draining processes, such as molten salt or molten metal draining processes, and can be applied to a process requiring high throughput draining.

Physical Properties of Polymer Mortar Recycling Waste Concrete Powder as a Filler (폐콘크리트 미분말을 충전재로 재활용한 폴리머 모르타르의 물성)

  • Hwang, Eui-Hwan;Choi, Jae-Jin;Hwang, Taek-Sung
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.317-322
    • /
    • 2005
  • Nowadays, recycling of aggregates from the waste concrete is in big demand due to the protection of environment and the shortage of aggregates that are needed for ever expanding construction projects. This study was undertaken to examine the feasibility of recycling waste concrete powder produced in the crushing process of demolished concrete as a filler material for polymer mortar. In this study, polymer mortar specimens were prepared by varying the mix proportion of polymer binder (ranging 9~15 wt%), waste concrete powder (ranging 0~20 wt%) substituted for silica powder, 0.1~0.3 mm fine aggregate (ranging 21~24 wt%) and 0.7~1.2 mm fine aggregate (ranging 44~47 wt%). For the prepared polymer mortar specimens, various physical properties such as strength, water absorption, heat water resistance, acid resistance, pore distribution and SEM observation were investigated in this work. As a result, physical properties of polymer mortar were observed to have remarkably improved with an increase of polymer binder, but greatly deteriorated with an increase of substitution quantity of waste concrete powder.

Borehole Disposal Concept: A Proposed Option for Disposal of Spent Sealed Radioactive Sources in Tanzania (보어홀 처분 개념: 탄자니아의 폐밀봉선원 처분을 위한 제안)

  • Salehe, Mikidadi;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.293-301
    • /
    • 2013
  • Borehole Disposal Concept (BDC) was initiated by the South African Nuclear Energy Corporation (NECSA) with the view to improve the radioactive waste management practices in Africa. At a time when geological disposal of radioactive waste is being considered, the need to protect ground water from possible radioactive contamination and the investigation of radionuclides migration through soil and rocks of zone of aeration into ground water has becomes very imperative. This is why the Borehole Disposal Concept (BDC) is being suggested to address the problem. The concept involves the conditioning and emplacement of disused sealed radioactive sources in an engineered facility of a relatively narrow diameter borehole (260 mm). Tanzania is operating a Radioactive Waste Management Facility where a number of spent sealed radioactive sources with long and short half lives are stored. The activity of spent sealed radioactive sources range from (1E-6 to 8.8E+3 Ci). However, the long term disposal solution is still a problem. This study therefore proposing the country to adopt the BDC, since the repository requires limited land area and has a low probability of human intrusion due to the small footprint of the borehole.

Basic Properties of Waste Wood-Plastic Composite Panels by Hot Press Molding Method (열압 성형법에 의한 폐목재-플라스틱 복합패널의 기초적 성질)

  • Choi, Nak-Woon;Mun, Kyoung-Ju;Choi, San-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.4
    • /
    • pp.95-104
    • /
    • 2004
  • A styrene solution of waste expanded polystyrene with a crosslinking agent and an initiator was used as a binder for waste wood-plastic composite panels. The waste wood-plastic composite panels are prepared with various binder contents and filler-binder ratios by using a hot press molding method. The apparent density of the composite panels is increased with increasing binder content and filler-binder ratio, while their water absorption and expansion in thickness are decreased with increasing binder content and filler-binder ratio. The maximum flexural strength and wet flexural strength of the composite panels are obtained at a binder content of 35% and a filler-binder ratio of 0.8. Decreases in the flexural strengths of the composite panels due to water immersion at 20 and $100^{\circ}C$ are hardly recognized at binder contents of 30% or more.

  • PDF

Predictive models of hardened mechanical properties of waste LCD glass concrete

  • Wang, Chien-Chih;Wang, Her-Yung;Huang, Chi
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.577-597
    • /
    • 2014
  • This paper aims to develop a prediction model for the hardened properties of waste LCD glass that is used in concrete by analyzing a series of laboratory test results, which were obtained in our previous study. We also summarized the testing results of the hardened properties of a variety of waste LCD glass concretes and discussed the effect of factors such as the water-binder ratio (w/b), waste glass content (G) and age (t) on the concrete compressive strength, flexural strength and ultrasonic pulse velocity. This study also applied a hyperbolic function, an exponential function and a power function in a non-linear regression analysis of multiple variables and established the prediction model that could consider the effect of the water-binder ratio (w/b), waste glass content (G) and age (t) on the concrete compressive strength, flexural strength and ultrasonic pulse velocity. Compared with the testing results, the statistical analysis shows that the coefficient of determination $R^2$ and the mean absolute percentage error (MAPE) were 0.93-0.96 and 5.4-8.4% for the compressive strength, 0.83-0.89 and 8.9-12.2% for the flexural strength and 0.87-0.89 and 1.8-2.2% for the ultrasonic pulse velocity, respectively. The proposed models are highly accurate in predicting the compressive strength, flexural strength and ultrasonic pulse velocity of waste LCD glass concrete. However, with other ranges of mixture parameters, the predicted models must be further studied.

Utilization of Liquid Waste from Methane Fermentation as a Source of Organic Fertilizer -III. Effect of Liquid Waste from Methane Fermentation on Maize Yield (메탄발효폐액(醱酵廢液)의 비료화(肥料化)에 관(關)한 연구(硏究) -III. 옥수수에 대(對)한 폐액(廢液)의 비효시험(肥效試驗))

  • Lim, Dong-Kyu;Shin, Jae-Sung;Choi, Du-Hoi;Park, Young-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.4
    • /
    • pp.333-336
    • /
    • 1987
  • A liquid waste from methane fermantation was applied on Maize field to determine its effect and optimum application rate on the plant growth. A basal application of liquid waste increased a considerable amount of soil water resulting in an increase of germination. Fresh and dry yields of maize plant increased as the liquid waste application rate increased and same as plant growth. Nitrogen and phosphorus components in plant and soil showed the same tendency as the yields. The result indicates that the liquid waste is potentially useful source for a fertilizer and irrigation water.

  • PDF

Environmental Characteristics of Waste Tire for Use as Soil Reinforcement (지반보강재로서 폐타이어 사용에 따른 환경영향 분석)

  • Cho, Jinwoo;Lee, Yongsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.61-68
    • /
    • 2013
  • This paper presents an experimental results on the environmental characteristics of waste tire. Experimental program includes a set of laboratory leaching tests and field pilot test for leachate analysis. Laboratory tests were conducted to illustrate how properties such as TOC, pH, turbidity and Zn change with tire sizes and drain conditions. In field pilot test, water samples were collected form a drainage system installed below the tire-reinforced retaining wall and analyzed for chemical quality. Laboratory leaching tests performed on various particle sizes of waste tire indicated that as tire size is increased, the concentration of leachate is decreased. In continuous flow column tests, the concentration of leachate decreased with the number of exposure periods or pore volumes flushed through the waste tire. However, during pause flow column tests, the concentration of leachates were increased with time. Field monitoring of effluent indicated that no significant adverse effects on ground water quality had occurred over a period of 12 months.

Effect of rubber fiber size fraction on static and impact behavior of self-compacting concrete

  • Thakare, Akshay A.;Siddique, Salman;Singh, Amardeep;Gupta, Trilok;Chaudhary, Sandeep
    • Advances in concrete construction
    • /
    • v.13 no.6
    • /
    • pp.433-450
    • /
    • 2022
  • The conventional disposal methods of waste tires are harmful to the environment. Moreover, the recycling/reuse of waste tires in domestic and industrial applications is limited due to parent product's quality control and environmental concerns. Additionally, the recycling industry often prefers powdered rubber particles (<0.60 mm). However, the processing of waste tires yields both powdered and coarser (>0.60 mm) size fractions. Reprocessing of coarser rubber requires higher energy increasing the product cost. Therefore, the waste tire rubber (WTR) less favored by the recycling industry is encouraged for use in construction products as one of the environment-friendly disposal methods. In this study, WTR fiber >0.60 mm size fraction is collected from the industry and sorted into 0.60-1.18, 1.18-2.36-, and 2.36-4.75-mm sizes. The effects of different fiber size fractions are studied by incorporating it as fine aggregates at 10%, 20%, and 30% in the self-compacting rubberized concrete (SCRC). The experimental investigations are carried out by performing fresh and hardened state tests. As the fresh state tests, the slump-flow, T500, V-funnel, and L-box are performed. As the hardened state tests, the scanning electron microscope, compressive strength, flexural strength and split tensile strength tests are conducted. Also, the water absorption, porosity, and ultrasonic pulse velocity tests are performed to measure durability. Furthermore, SCRC's energy absorption capacity is evaluated using the falling weight impact test. The statistical significance of content and size fraction of WTR fiber on SCRC is evaluated using the analysis of variance (ANOVA). As the general conclusion, implementation of various size fraction WTR fiber as fine aggregate showed potential for producing concrete for construction applications. Thus, use of WTR fiber in concrete is suggested for safe, and feasible waste tire disposal.