Environmental Characteristics of Waste Tire for Use as Soil Reinforcement

지반보강재로서 폐타이어 사용에 따른 환경영향 분석

  • Cho, Jinwoo (Korea Institute of Construction Technology) ;
  • Lee, Yongsoo (Korea Institute of Construction Technology)
  • Published : 2013.01.01

Abstract

This paper presents an experimental results on the environmental characteristics of waste tire. Experimental program includes a set of laboratory leaching tests and field pilot test for leachate analysis. Laboratory tests were conducted to illustrate how properties such as TOC, pH, turbidity and Zn change with tire sizes and drain conditions. In field pilot test, water samples were collected form a drainage system installed below the tire-reinforced retaining wall and analyzed for chemical quality. Laboratory leaching tests performed on various particle sizes of waste tire indicated that as tire size is increased, the concentration of leachate is decreased. In continuous flow column tests, the concentration of leachate decreased with the number of exposure periods or pore volumes flushed through the waste tire. However, during pause flow column tests, the concentration of leachates were increased with time. Field monitoring of effluent indicated that no significant adverse effects on ground water quality had occurred over a period of 12 months.

본 연구에서는 지반보강재로서 폐타이어 사용에 따른 환경영향을 평가하기 위하여 실내실험 및 현장시험시공을 수행하였다. 실내실험을 통하여 폐타이어의 용출특성에 가장 큰 영향을 미치는 폐타이어의 입경과 배수조건을 변화시켜가며 유출수의 pH, 탁도, TOC, Zn 농도를 분석하였다. 또한, 현장시험시공을 통하여 폐타이어를 이용한 보강토 옹벽 시공 후 하부 집수정의 수질을 분석하였다. 입경에 따른 용출실험 결과 폐타이어 입경이 증가할수록 용출농도가 감소하는 것을 확인할 수 있었으며, 이는 비표면적의 차이 때문으로 판단된다. 배수조건에 따른 용출실험 결과 배수조건인 경우 시간이 경과할수록 용출농도가 감소하여 주변 환경에 큰 영향을 미치지 않을 것으로 판단되나, 비배수 조건인 경우 시간이 경과할수록 용출농도가 증가하는 현상을 발견할 수 있었다. 1년간의 현장모니터링 결과 폐타이어로 보강된 옹벽으로부터 발생되는 침출수는 전반적으로 용출농도가 높지 않은 것으로 나타났으며, 침출수 발생 초기에 농도가 증가하다가 이후 점점 감소하여 원수인 우수와 비슷해지는 경향을 나타내었다. 따라서 폐타이어를 지반보강재로 사용함에 따라 발생하는 환경적 영향은 무시할 수 있는 수준임을 알 수 있었다.

Keywords

References

  1. Chesner, W. H., Collins, R. J. and MacKay, M. H. (1998), User guidelines for waste and byproduct materials in pavement construction, FHWA-RD-97-148, Federal Highway Administration, SW Washington, DC 20590, pp. 521-523.
  2. Garga, V. K. and O'Shaughnessy, V. (2000), Tire-reinforced earth fill. part1: construction of a test fill, performance, and retaining wall design, Canadian Geotechnical Journal, Vol. 37, No. 5, pp. 75-96. https://doi.org/10.1139/t99-084
  3. Horace, M. Y., Kassahun, S., Daniel, Z. and Gajanan, S. (2003), Physical and chemical properties of recycled tire shreds for use in construction, Journal of Environmental Engineering, Vol. 129, No. 10, pp. 921-929. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:10(921)
  4. Humphrey, D. N. and Manion, W. P. (1992), Properties of tire chip for light weight fill, grouting, soil improvement and geosynthetics, Geotechnical Special Publication, No. 30, Vol. 2, pp. 1345-1355.
  5. Humphrey, D. N., Katz, L. E. and Blumenthal, M. (1997), Water quality effects on tire shred fills place above the ground water table, Testing Soil Mixed with Waste or Recycled Materials, ASTM STP 1275, pp. 288-313.
  6. Kim, J. M, Cho, S. D., Lee, Y. S. and Paik, Y. S. (2004), Research of the re-use of scrap tires as a backfill material for retaining wall, J. of Korea Society of Waste Management, Vol. 21, No. 2, pp. 117-126 (in Korean).
  7. Koh, T. H., Lee, S. J., Kim, B. S., Lee, J. K., Sa, G. M. and Lee, T. Y.(2010), Leaching characteristics of waste tire as a fill material, J. of Korea Society of Waste Management, Vol. 27, No. 3, pp. 219-225 (in Korean).
  8. O'Shaughnessy, V. and Garga, V. K. (2000), Tire-reinforced earth fill. part3: environmental assessment, Canadian Geotechnical Journal, Vol. 37, No. 5, pp. 117-131. https://doi.org/10.1139/t99-086
  9. Park, J. K., Kim, J. Y. and Edil, T. B. (1996), Mitigation of organic compound movement in landfills by shredded tires, Water Environment Research, Vol. 68, No. 1, pp. 4-10. https://doi.org/10.2175/106143096X127154
  10. Tommy, Edeskar (2004), Technical and environmental properties of tire shreds focusing on ground engineering applications, Technical report, Lulea University of Technology, SE-917 87 Lulea, pp. 53-83.
  11. US EPA (1989), Requirements for hazardous waste landfill design, construction and closure, Seminar Publication, EPA/625/ 4-89/022, Environmental Protection Agency, pp. 9-10.
  12. Yoon, Y. W., Choi, K. S., Yoon, G. L. and Kim, B. S. (2004a), Utilization of waste tires as soil reinforcement; (1) soil reinforcing effect, J. of Korea Geotechnical Society, Vol. 20, No. 3, pp. 107-117 (in Korean).
  13. Yoon, Y. W., Moon, C. M. and Kim, G. H. (2004b), Utilization of waste tires as soil reinforcement; (2) environmental effect, J. of Korea Geotechnical Society, Vol. 20, No. 3, pp. 119-128 (in Korean).
  14. Yoon, Y. W. (2007), A Study on the application of waste tires for soil improvement and construction of reinforced retaining wall, Construction & Transportation R&D Report, R&D/05건설핵심C07, In-Ha University, pp. 2-11 (in Korean).