• Title/Summary/Keyword: waste-water

Search Result 2,962, Processing Time 0.032 seconds

Trend Analysis of Earthquake Researches in the World (전세계의 지진 연구의 추세 분석)

  • Yun, Sul-Min;Hamm, Se-Yeong;Jeon, Hang-Tak;Cheong, Jae-Yeol
    • Journal of the Korean earth science society
    • /
    • v.42 no.1
    • /
    • pp.76-87
    • /
    • 2021
  • In this study, temporal trend of researches in earthquake with groundwater level, water quality, radon, remote sensing, electrical resistivity, gravity, and geomagnetism was searched from 2001 to 2020, using the journals indexed in Web of Science, and the number of articles published in international journals was counted in relation to the occurrences of earthquakes (≥Mw 5.0, ≥Mw 6.0, ≥Mw 7.0, ≥Mw 8.0, and ≥Mw 9.0). The number of articles shows an increasing trend over the studied period. This is explained by that studies on earthquake precursor and seismic monitoring becomes active in various fields with integrated data analysis through the development of remote sensing technology, progress of measurement equipment, and big data. According to Mann-Kendall and Sen's tests, gravity-related articles exhibit an increasing trend of 1.30 articles/yr, radon-related articles (0.60 articles/yr), groundwater-related articles (0.70 articles/yr), electrical resistivity-related articles (0.25 articles/yr), and remote-sensing-related articles (0.67 articles/yr). By cross-correlation analysis of the number of articles in each field with removing trend effect and the number of earthquakes of ≥Mw 5.0, ≥Mw 6.0, ≥Mw 7.0, ≥Mw 8.0, and ≥Mw 9.0, radon and remote sensing fields exhibit a high cross-correlation with a delay time of one year. In addition, large-scale earthquakes such as the 2004 and 2005 Sumatra earthquake, the 2008 Sichuan earthquake, the 2010 Haiti earthquake, and the 2010 Chile earthquake are estimated to be related with the increase in the number of articles in the corresponding periods.

A Study on the Optimal Operating Conditions for an Unreacted Hydrogen Oxidation-Heat Recovery System for the Safety of the Hydrogen Utilization Process (수소 활용공정 안전성 확보를 위한 미반응 수소 산화-열 회수 시스템의 운전 조건 최적화 연구)

  • Younghee Jang;Sung Su Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.307-312
    • /
    • 2023
  • In this study, a catalytic oxidation-heat recovery system was designed that can remove unreacted with a concentration of about 1% to 6% in the exhaust gas of hydrogen fuel cells and recover heat to ensure safety in the hydrogen economy. The safety system was devised by filling hydrogen oxidation catalysts at room temperature that can remove unreacted hydrogen without any energy source, and an exhaust-heat recovery device was integrated to efficiently recover the heat released from the oxidation reaction. Through CFD analysis, variations in pressure and fluid within the system were shown depending on the filling conditions of the hydrogen oxidation system. In addition, it was found that waste heat could be recovered by optimizing the temperature of the exhaust gas, flow rate, and pressure conditions within the heat recovery system and securing hot water above 40 ℃ by utilizing the exhaust gas oxidation heat source above 300 ℃. Through this study, it was possible to confirm the potential of utilizing hydrogen processes, which are applied in small to medium-sized systems such as hydrogen fuel cells, as a safety system by evaluating them at a pilot scale. Additionally, it could be a safety guideline for responding to unexpected hydrogen safety accidents through further pilot-scale studies.

The Performance Evaluation of In-situ Carbonation Mortar Using Gaseous CO2 (기체 CO2를 사용한 In-situ 탄산화 모르타르 성능평가)

  • Changgun Park;Deukhyun Ryu;Seongwoo Choi;Kwangwoo Wi;Seungmin Lim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.226-233
    • /
    • 2023
  • In this study, two phases were conducted to investigate the direct injection of gaseous CO2 into cement mortar. The aim was to advance carbon capture, utilization, and storage (CCUS) technology by harnessing industrial waste CO2 from the domestic ready-mixed concrete industry. In the first phase, the factors influencing the physical properties of cement mortar when using gaseous CO2 were identified. This included a review of materials to achieve physical properties comparable to a reference formulation. As a result of this phase, it was confirmed that traditional approaches, such as adjusting the water-to-cement ratio, had limitations in achieving the desired physical properties. Consequently, the second phase focused on the optimization of CO2-injected mortar. This involved studying the CO2 application and mixing method for cement mortar. Changes in properties were observed when gaseous CO2 was injected into the mortar. The optimal injection quantity and time to enhance the compressive strength of mortar were determinded. As a result, this study indicated that an extra mixing time exceeding 120 seconds was necessary, compared to conventional mortar. The optimal CO2 injection rate was identified as 0.1 to 0.2 % by weight of cement, taking both flowability and compressive strength performance into account. Increasing the CO2 injection time did not further enhance strength. For this approach to be employed as a CCUS technology, additional studies are required, including a microstructural analysis evaluating the amount of immobilized CO2.

Predicting the splitting tensile strength of manufactured-sand concrete containing stone nano-powder through advanced machine learning techniques

  • Manish Kewalramani;Hanan Samadi;Adil Hussein Mohammed;Arsalan Mahmoodzadeh;Ibrahim Albaijan;Hawkar Hashim Ibrahim;Saleh Alsulamy
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.375-394
    • /
    • 2024
  • The extensive utilization of concrete has given rise to environmental concerns, specifically concerning the depletion of river sand. To address this issue, waste deposits can provide manufactured-sand (MS) as a substitute for river sand. The objective of this study is to explore the application of machine learning techniques to facilitate the production of manufactured-sand concrete (MSC) containing stone nano-powder through estimating the splitting tensile strength (STS) containing compressive strength of cement (CSC), tensile strength of cement (TSC), curing age (CA), maximum size of the crushed stone (Dmax), stone nano-powder content (SNC), fineness modulus of sand (FMS), water to cement ratio (W/C), sand ratio (SR), and slump (S). To achieve this goal, a total of 310 data points, encompassing nine influential factors affecting the mechanical properties of MSC, are collected through laboratory tests. Subsequently, the gathered dataset is divided into two subsets, one for training and the other for testing; comprising 90% (280 samples) and 10% (30 samples) of the total data, respectively. By employing the generated dataset, novel models were developed for evaluating the STS of MSC in relation to the nine input features. The analysis results revealed significant correlations between the CSC and the curing age CA with STS. Moreover, when delving into sensitivity analysis using an empirical model, it becomes apparent that parameters such as the FMS and the W/C exert minimal influence on the STS. We employed various loss functions to gauge the effectiveness and precision of our methodologies. Impressively, the outcomes of our devised models exhibited commendable accuracy and reliability, with all models displaying an R-squared value surpassing 0.75 and loss function values approaching insignificance. To further refine the estimation of STS for engineering endeavors, we also developed a user-friendly graphical interface for our machine learning models. These proposed models present a practical alternative to laborious, expensive, and complex laboratory techniques, thereby simplifying the production of mortar specimens.

Assessment of Ion Leaching and Recycling Potential of Steel Slag Mixed with Clay (점토와 혼합된 제강슬래그의 이온 용출 및 재활용 가능성 평가)

  • Hyeongjoo Kim;Hyeonki Lee;Taegew Ham;Sohee Jeong;Hyeongsoo Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.5
    • /
    • pp.39-47
    • /
    • 2024
  • In this study, the environmental implications of electric arc furnace steel slag, commonly used in road construction and soil reinforcement, were examined. Experiments were conducted to assess the leaching of heavy metals based on particle size and to investigate ion leaching from specimens with varying mixtures of steel slag and clay. The official waste test revealed no detectable heavy metals in the sample items. However, when subjected to leaching experiments and analyzed using ICP-OES, certain heavy metals were found. The reaction of steel slag with water, facilitated by free CaO within the slag, was identified as the cause of leaching. Results showed that aluminum, exhibiting the highest leaching rate, displayed an inverse relationship with particle size. In mixed soil containing steel slag and clay, higher steel slag content resulted in increased aluminum leaching. Nonetheless, the quantity of leached aluminum was notably lower in mixed soil compared to pure steel slag. Furthermore, leaching of other heavy metals remained within acceptable limits. These findings suggest that recycling mixed soil of steel slag and clay for road construction or soil stabilization presents reduced environmental risks compared to using steel slag alone. Utilizing such mixtures could offer an environmentally sustainable and safe alternative.

Analysis of grout injection distance in single rock joint (단일절리 암반에서 그라우팅 주입거리 분석)

  • Ji-Yeong Kim;Jo-Hyun Weon;Jong-Won Lee;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.541-554
    • /
    • 2023
  • The utilization of underground spaces in relation to tunnels and energy/waste storage is on the rise. To ensure the stability of underground spaces, it is crucial to reinforce rock fractures and discontinuities. Discontinuities, such as joints, can weaken the strength of the rock and lead to groundwater inflow into underground spaces. In order to enhance the strength and stability of the area around these discontinuities, rock grouting techniques are employed. However, during rock grouting, it is impossible to visually confirm whether the grouting material is being smoothly injected as intended. Without proper injection, the expected increases in strength, durability, and degree of consolidation may not be achieved. Therefore, it is necessary to predict in advance whether the grouting material is being injected as designed. In this study, we aimed to assess the injection performance based on injection variables such as the water/cement mixture ratio, injection pressure, and injection flow using UDEC (Universal Distinct Element Code) numerical program. Additionally, numerical results were validated by the lab experiment. The results of this study are expected to help optimize variables such as injection material properties, injection time, and pump pressure in the grouting design in the field.

Technology to Remove Trace Pollutants in Sewage Treatment Water Using Jellyfish Characteristics (해파리의 특성을 활용한 하수처리장 처리수 내 미량오염물질 제거 기술)

  • Hyeok Jin Park;Eun Jin Kim;Kyung Sil Choo;Joo Eun Shim;Min-Kyeong Yeo
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.54-60
    • /
    • 2024
  • The present study was aimed to evaluate the removal of the trace pollutants (heavy metals and microplastics) in the sewage treatment plant by using the jellyfish Extract at Immunity reaction (JEI) of Aurelia coerulea. The experiment was conducted on two different scales: the lab scale using a Jar-tester and the Pilot system scale equipped with two newly developed devices in the laboratory, the active tube connection mixed system and the concentration integrated separation device. Compared to anionic polymers currently used in the field, JEI showed similar or higher efficiency to remove the trace pollutants. When JEI was added to the effluent through the Pilot system, the combination of JEI and the trace pollutants was maximized through two mixing processes, and as a result, the removal rate of the trace pollutants was greatly improved. Based on these results, we propose the present technology as an alternative to removing trace pollutants that can reduce ecosystem risk and minimize the generation of inorganic waste, away from the existing method.

Analysis on Study Cases of Safety Assessment and Cases for Spent Nuclear Fuel Pool Accident (사용후핵연료 습식저장시설 사고 안전성 평가 연구 현황 및 사고 사례 분석)

  • Shin Dong Lee;Hyeok Jae Kim;Geon Woo Son;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.283-292
    • /
    • 2023
  • Spent nuclear fuel corresponds to high-level radioactive waste that has high decay heat and radioactivity. Accordingly, Spent nuclear fuel withdrawn from the reactor core is primarily stored and managed in a spent nuclear fuel pool in the nuclear power plant to reduce decay heat and radioactivity. In Korea, most nuclear power plant store all spent nuclear fuel in a spent nuclear fuel pool. For wet storage, there are no defense in depth different with reactor core. The study related to spent nuclear fuel pool accident should be carried out to ensure safety. Therefore, it is necessary to analyze previous study cases related to safety of spent nuclear fuel pool and accident cases to build foundational knowledge. The Objective of this study is to analyze study cases of safety assessment and cases for spent nuclear fuel pool accident. For analyzing study cases of safety assessment, possible phenomena when spent nuclear fuel pool accident occurring identified, Subsequently, study cases for safety assessment about each phenomena were investigated, and materials & methods and results for each study are analyzed. For analyzing cases for spent nuclear fuel pool accident, we analyzed accident cases caused by loss of cooling and loss of coolant in spent nuclear fuel pool. Subsequently, causes and change of water level and temperature by each accident case are analyzed. As a result of the analysis on study cases of spent nuclear fuel pool accident, the results of the study conducted by each research institute were vary depending on the computer code, materials & methods of experiment and major assumptions used in the study. As a result of analyzing cases for spent nuclear fuel pool accident, it was found that accident cases for loss of cooling is more than cases for loss of coolant accident. Even though the types of accident in spent nuclear fuel pool were similar, the specific causes were different by each accident case. All the accident cases analyzed did not lead to severe accidents, such as nuclear fuel being exposed to the air. The result of this study will be used as fundamental data for study on spent nuclear fuel pool accident that will be conducted in the future.

The Study on the Composting by Using Dam Suspended Particle Sawdust and Sewage Sludge (댐부유물 톱밥과 하수슬러지를 이용한 퇴비화 연구)

  • Ryu, Ji-Hune;Lee, Jong-Jin;Hong, Joo-Hwa;Chang, Ki-Woon;Lee, Gyu-Seung;Park, Gwan-Soo;Han, Ki-Pil
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.1
    • /
    • pp.98-103
    • /
    • 2010
  • This study was carried out on the composting of the most part of the plant waste materials inflowed-drifting into the dam during the localized heavy rain and the rainy season, due to the abnormal climate change, and for the sewage sludge banned to dispose legally into the ocean from the year of 2012. It was analysed the distinctive physicochemical qualities of the compost with treatment S-1(dam suspended particle sawdust : oak tree bark : sewage sludge : chicken manure = 30 : 20 : 40 : 10) and treatment S-2(dam suspended particle sawdust : oak tree bark : sewage sludge : chicken manure = 30 : 30 : 30 : 10). Both S-1 and S-2 maintained for 10 days at above $65^{\circ}C$ of the compost pile temperature, and the most of its pathogen were destroyed. In case of pH, until the 90th day into composting, S-1 with the pH value of 7.78 was slightly higher than S-2. The C/N value of S-1 was 15.3 and that of S-2 was 16.9. The quality of its final product was satisfied to the manufacture-standards. The GI value of S-1 was 91 higher than that of S-2, which was 84. In conclusion, it is highly recommendable to manufacture S-1 for its frequent usage of dam suspended particle sawdust and sewage sludge, and for its excellent quality and safety.

Evaluation of the Potential of Wood Preservatives Formulated with Okara (두부비지를 이용한 목재 방부제의 사용가능성 평가)

  • Kim, Ho-Yong;Choi, In-Gyu;Ahn, Sye-Hee;Oh, Sei-Chang;Hong, Chang-Young;Min, Byeong-Cheol;Yang, In
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.110-123
    • /
    • 2008
  • The use of CCA as a wood preservative was recently inhibited due to its environmental pollution and human harmfulness. Instead of CCA, copper azole (CuAz) and alkaline copper quaternary (ACQ) have been used as alternative wood preservatives, but the price of the preservatives is much more expensive than that of CCA. As a substitute for high-priced CuAz and ACQ, environmentally friendly wood preservatives were formulated with okara, which is an organic waste from the production of tofu. Prior to formulating the preservatives, okara was hydrolyzed by three levels of sulfuric acid concentration (1, 2.5 and 5%) to easily penetrate the effective components of the preservatives into wood blocks. Final preservative solutions were formulated with the hydrolyzed okara and metal salts, such as copper sulfate, copper chloride and borax. The preservatives were treated into wood blocks by vacuum-pressure method to measure the treatability of the preservatives, and the treated wood blocks were placed in hot water for three days to measure the leachability of the preservatives. The effective components of the preservatives might be successfully penetrated into wood blocks through the uses of hydrolyzed okara and ammonia water. However, the leached amount of effective components was increased as the concentration of acid used for the hydrolysis of okara increased. The treatability and leachability of the preservatives were not affected by hydrolysis temperature but negatively affected by the addition of borax. Based on the results above, the optimal conditions for formulating okara-based wood preservatives cost-effectively and environmentally might be 1% acid hydrolysis of okara and the use of $CuCl_2$ as a metal salt. In addition, the treatability and leachability of okara-based wood preservatives were superior or no differences comparing with those of CuAz. Therefore, it is concluded that okara-based wood preservatives might have a potential to be used as an environmentally friendly wood preservative.