• Title/Summary/Keyword: waste rock

Search Result 370, Processing Time 0.035 seconds

Gas Migration in Low- and Intermediate-Level Waste (LILW) Disposal Facility in Korea (중·저준위 방사성폐기물 처분시설 폐쇄후 기체이동)

  • Ha, Jaechul;Lee, Jeong-Hwan;Jung, Haeryong;Kim, Juyub;Kim, Juyoul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.267-274
    • /
    • 2014
  • The first Low- and Intermediate-Level Waste (LILW) disposal facility with 6 silos has been constructed in granite host rock saturated with groundwater in Korea. A two-dimensional numerical modeling on gas migration was carried out using TOUGH2 with EOS5 module in the disposal facility. Laboratory-scale experiments were also performed to measure the important properties of silo concrete related with gas migration. The gas entry pressure and relative gas permeability of the concrete was determined to be $0.97{\pm}0.15bar$ and $2.44{\times}10^{-17}m^2$, respectively. The results of the numerical modeling showed that hydrogen gas generated from radioactive wastes was dissolved in groundwater and migrated to biosphere as an aqueous phase. Only a small portion of hydrogen appeared as a gas phase after 1,000 years of gas generation. The results strongly suggested that hydrogen gas does not accumulate inside the disposal facility as a gas phase. Therefore, it is expected that there would be no harmful effects on the integrity of the silo concrete due to gas generation.

Review of Site Characterization Methodology for Deep Geological Disposal of Radioactive Waste (방사성폐기물의 심층 처분을 위한 부지특성조사 방법론 해외 사례 연구)

  • Park, Kyung-Woo;Kim, Kyung-Su;Koh, Yong-Kwon;Jo, Yeonguk;Ji, Sung-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.239-256
    • /
    • 2017
  • In the process of site selection for a radioactive waste disposal, site characterization must be carried out to obtain input parameters to assess the safety and feasibility of deep geological repository. In this paper, methodologies of site characterization for radioactive waste disposal in Korea were suggested based on foreign cases of site characterization. The IAEA recommends that site characterization for radioactive waste disposal should be performed through stepwise processes, in which the site characterization period is divided into preliminary and detailed stages, in sequence. This methodology was followed by several foreign countries for their geological disposal programs. General properties related to geological environments were obtained at the preliminary site characterization stage; more detailed site characteristics were investigated during the detailed site characterization stage. The results of investigation of geology, hydro-geology, geochemistry, rock mechanics, solute transport and thermal properties at a site have to be combined and constructed in the form of a site descriptive model. Based on this site descriptive model, the site characteristics can be evaluated to assess suitability of site for radioactive waste disposal. According to foreign site characterization cases, 7 or 8 years are expected to be needed for site characterization; however, the time required may increase if the no proper national strategy is provided.

Construction Performance of High Strength Concrete Utilizing Wasted Limestone Coarse Aggregates (석회암 폐석 굵은골재를 사용한 고강도 콘크리트의 시공)

  • Han, Cheon-Goo;Kim, Ki-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.545-551
    • /
    • 2015
  • The aim of this research is suggesting application method of the wasted rock obtained from the limestone quarry of raw material for cement as a coarse aggregate for high strength concrete after crushing and sieving processes. The wasted rock has been normally wasted because of its low quality as a material for cement production. In this research, the concrete using this wasted limestone coarse aggregate was evaluated the constructability based on the performances of workability, air content, and compressive strength. From the experiment, a favorable performance was achieved with a limestone coarse aggregate for high strength concrete comparing to the high strength concrete using granite coarse aggregate.

Mechanics of the slaking of shales

  • Vallejo, Luis E.
    • Geomechanics and Engineering
    • /
    • v.3 no.3
    • /
    • pp.219-231
    • /
    • 2011
  • Waste fills resulting from coal mining should consist of large, free-draining sedimentary rocks fragments. The successful performance of these fills is related to the strength and durability of the individual rock fragments. When fills are made of shale fragments, some fragments will be durable and some will degrade into soil particles resulting from slaking and inter-particle point loads. The degraded material fills the voids between the intact fragments, and results in settlement. A laboratory program with point load and slake durability tests as well as thin section examination of sixty-eight shale samples from the Appalachian region of the United States revealed that pore micro-geometry has a major influence on degradation. Under saturated and unsaturated conditions, the shales absorb water, and the air in their pores is compressed, breaking the shales. This breakage was more pronounced in shales with smooth pore boundaries and having a diameter equal to or smaller than 0.060 mm. If the pore walls were rough, the air-pressure breaking mechanism was not effective. However, pore roughness (measured by the fractal dimension) had a detrimental effect on point load resistance. This study indicated that the optimum shales to resist both slaking as well as point loads are those that have pores with a fractal dimension equal to 1.425 and a diameter equal to or smaller than 0.06 mm.

Thermal-hydro-mechanical Modelling for an Äspö prototype repository: analysis of thermal behavior (Äspö 원형 처분장에 대한 열-수리-역학적 모델링 연구: 열적 거동 해석)

  • Lee, Jae Owan;Birch, Kenneth;Choi, Heui-Joo
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.372-382
    • /
    • 2013
  • Thermal-hydro-mechanical (THM) modeling is a critical R&D issue in the performance and safety assessment of a high-level waste repository. With an $\ddot{A}$sp$\ddot{o}$ prototype repository, its thermal behavior was analyzed and then compared with in-situ experimental data for its validation. A model simulation was used to calculate the temperature distributions in the deposition holes, deposition tunnel, and surrounding host rock. A comparison of the simulation results with the experimental data was made for deposition hole DH-6, which showed that there was a temperature difference of $2{\sim}5^{\circ}C$ depending on the location of the measuring points, but there was a similar trend in the evolution curves of temperature as a function of time. It was expected that the coupled modeling of the thermal behavior with the hydro-mechanical behavior in the buffer and backfill of the $\ddot{A}$sp$\ddot{o}$ prototype repository would give a better agreement between the experimental and model calculation results.

Introduction of International Cooperation Project, DECOVALEX from 2008 to 2019 (2008년부터 2019년까지 수행된 국제공동연구 DECOVALEX 소개)

  • Lee, Changsoo;Kim, Taehyeon;Lee, Jaewon;Park, Jung-Wook;Kwon, Seha;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.271-305
    • /
    • 2020
  • An effect of coupled thermo-hydro-mechanical and chemical (THMC) behavior is an essential part of the performance and safety assessment of geological disposal systems for high-level radioactive waste and spent nuclear fuel. Furthermore, numerical models and modeling techniques are necessary to analyze and predict the coupled THMC behavior in the disposal systems. However, phenomena associated with the coupled THMC behavior are nonlinear, and the constitutive relationships between them are not well known. Therefore, it is challenging to develop numerical models and modeling techniques to analyze and predict the coupled THMC behavior in the geological disposal systems. It is also difficult to verify and validate the development of the models and techniques because it requires expensive laboratory tests and in-situ experiments that need to be performed for a long time. DECOVALEX was initiated in 1992 to efficiently develop numerical models and modeling techniques and validate the developed models and techniques against the lab and in-situ experiments. In Korea, Korea Atomic Energy Research Institute has participated in DECOVALEX-2011, DECOVALEX-2015, and DECOVALEX-2019 since 2008. In this study, all tasks in the three DECOVALEX projects were introduced to the researcher in the field of rock mechanics and geotechnical engineering in Korea.

Comparative Analysis of the Joint Properties of Granite and Granitic Gneiss by Depth (심도에 따른 대전지역 화강암과 안동지역 편마암의 절리특성 비교분석)

  • Choi, Junghae
    • Economic and Environmental Geology
    • /
    • v.52 no.2
    • /
    • pp.189-197
    • /
    • 2019
  • HLW (High Level Radioactive Waste) is one of the problems that must be solved in the countries that implement nuclear power generation. Most countries that are concerned about HLW treatment are considering complete isolation from human society by disposing them deep underground. For perfect isolation, understanding the characteristics of underground rocks is very important. In particular, understanding the characteristics of discontinuity as a path way is one of the first things in order to predict the movement of exposed nuclear species to the surface. In this study, we used 500m underground core samples obtained from granite and gneiss area. The purpose of this study is to understand the characteristics of the discontinuities in each rock type and to analyze the properties of the joints in the underground relative to the surrounding environment. For this purpose, the types of discontinuities were classified and the distribution of each discontinuity were analyzed through visual analysis of the each sample obtained at 500m underground. This study can be used as a basic data for understanding the properties of discontinuities in the rock of the survey area and it can be also used as an important data for understanding the distribution characteristics of discontinuities according to the rock types.

Design Considerations for Buffer Materials and Research Status of Enhanced Buffer Materials (완충재 설계시 고려사항 및 고기능 완충재 연구 현황)

  • Lee, Gi-Jun;Yoon, Seok;Kim, Taehyun;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.32 no.1
    • /
    • pp.59-77
    • /
    • 2022
  • Currently, the design reference temperature of the buffer material for disposing of high-level radioactive waste is less than 100℃, so if the heat dissipation capacity of the buffer material is improved, the spacings of the disposal tunnel and the deposition hole in the repository can be reduced. First of all, this study tries to analyze the criteria for thermal-hydraulic-mechanical performance of the buffer materials and to investigate the researches regarding the enhanced buffer materials with improved thermal conductivity. First, the thermal conductivity should be as high as possible and is affected by dry density, water content, temperature, mineral composition, and bentonite type. the organic content of the buffer material can have a significant effect on the corrosion performance of a canister, so the organic content should be low. In addition, hydraulic conductivity of the buffer material should be less than that of near-field rock and swelling pressure should be appropriate for buffer materials to function properly. For the development of enhanced buffer materials, additives such as sand, graphite, and graphite oxide are typically used, and a thermal conductivity can be greatly improved with a very small amount of graphite addition compared to sand.

Analysis of Porosity and Distribution of Pores in Rocks by Micro Focus X-Ray CT (미소 초점 X선 CT를 이용한 암석 내 공극의 분포 및 공극률 분석)

  • Jeong, Gyo-Cheol;Takahashi, Manabu
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.461-465
    • /
    • 2010
  • Weathering and permeability in rocks play a very important role in underground disposal of radioactive waste and their long-term management as well as stability security of rock structures. Weathering and permeability of rocks are largely controlled by the characters of inner structures of rocks. In other words, weathering rate can be accelerated depending on the quantity of pore and microcrack in rocks. Quantitative evaluation of inner structures of rocks can serve as a tool that can assess the degree of weathering of rocks. Therefore it can be said that the understanding of three dimensional distribution of the inner structure of rocks is important for long-term management of rock structures. This study was performed to analyze three dimensional distribution of pore in rocks using Micro Focus X-ray CT on fresh granite and weathered granite from Korea. Results of the analysis clearly show distribution of pore and porosity of the inner rock.

Safety Assessment on Disposal of HLW from P&T Cycle (핵변환 잔류 고준위 방사성 폐기물 처분 성능 평가)

  • 이연명;황용수;강철형
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.132-145
    • /
    • 2001
  • The purpose and need of the study is to quantify the advantage or disadvantage of the environmental friendliness of the partitioning of nuclear fuel cycle. To this end, a preliminary study on the quantitative effect of the partition on the permanent disposal of spent PWR and CANDU fuel (HLW) was carried out. Before any analysis, the so-called reference radionuclide release scenario from a potential repository embedded into a crystalline rock was developed. Firstly, the feature, event and processes (FEPs) which lead to the release of nuclides from waste disposed of in a repository and the transport to and through the biosphere were identified. Based on the selected FEPs, the ‘Well Scenario’which might be the worst case scenario was set up. For the given scenario, annual individual doses to a local resident exposed to radioactive hazard were estimated and compared to that from direct disposal. Even though partitioning and transmutation could be an ideal solution to reduce the inventory which eventually decreases the release time as well as the peaks in the annual dose and also minimize the repository area through the proper handling of nuclides, it should overcome major disadvantages such as echnical issues on the partitioning and transmutation system, cost, and public acceptance, and environment friendly issues. In this regard, some relevant issues are also discussed to show the direction for further studies.

  • PDF