DOI QR코드

DOI QR Code

Comparative Analysis of the Joint Properties of Granite and Granitic Gneiss by Depth

심도에 따른 대전지역 화강암과 안동지역 편마암의 절리특성 비교분석

  • Choi, Junghae (Department of Earth Science Education, Kyungpook National University)
  • 최정해 (경북대학교 지구과학교육과)
  • Received : 2019.02.09
  • Accepted : 2019.03.01
  • Published : 2019.04.28

Abstract

HLW (High Level Radioactive Waste) is one of the problems that must be solved in the countries that implement nuclear power generation. Most countries that are concerned about HLW treatment are considering complete isolation from human society by disposing them deep underground. For perfect isolation, understanding the characteristics of underground rocks is very important. In particular, understanding the characteristics of discontinuity as a path way is one of the first things in order to predict the movement of exposed nuclear species to the surface. In this study, we used 500m underground core samples obtained from granite and gneiss area. The purpose of this study is to understand the characteristics of the discontinuities in each rock type and to analyze the properties of the joints in the underground relative to the surrounding environment. For this purpose, the types of discontinuities were classified and the distribution of each discontinuity were analyzed through visual analysis of the each sample obtained at 500m underground. This study can be used as a basic data for understanding the properties of discontinuities in the rock of the survey area and it can be also used as an important data for understanding the distribution characteristics of discontinuities according to the rock types.

고준위방사성폐기물은 원자력 발전을 실시하는 국가에서는 반드시 해결해야 될 문제 가운데 하나이다. 대부분 고준위방사성폐기물 처리를 고민하는 나라에서는 지하 심부의 깊은 곳에 처분함으로써 인간사회로의 완벽한 격리를 고려하고 있다. 이러한 완벽한 격리를 위해서는 지하 심부에 위치하고 있는 암반의 특성을 파악하는 것이 매우 중요한 일이다. 특히 노출된 핵종이 이동을 통해 지표로 올라오는 것을 예측하기 위해서는 이동 경로가 되는 불연속의 특징을 이해하는 것은 무엇보다도 우선시 되어야 할 사항이다. 본 연구에서는 화강암과 편마암이 분포하는 지역에서 획득한 심부 500m 이하의 시료를 활용하여 각 암종별 분포하고 있는 불연속면의 특성을 이해하고 주변 환경과 고려하여 지하에 분포하고 있는 절리면의 특징을 분석하는데 그 목적이 있다. 이를 위해서 지하 500m에서 획득한 시료에 대한 육안분석을 통해 불연속면의 종류를 분류하고 각 불연속면의 분포특성을 분석하였다. 본 연구는 조사지역의 지하에 분포하고 있는 불연속면의 특징을 이해하는 기초자료로 활용될 수 있으며 추후 암종에 따른 불연속면의 분포 특징을 이해하는데 중요한 자료로 활용될 수 있을 것으로 기대한다.

Keywords

JOHGB2_2019_v52n2_189_f0001.png 이미지

Fig. 1. Geological map of granite area (Park et al., 1968).

JOHGB2_2019_v52n2_189_f0002.png 이미지

Fig. 2. Geological map of gneiss area (Kim et al., 1970, Chang et al., 1978).

JOHGB2_2019_v52n2_189_f0003.png 이미지

Fig. 3. Pictures of (a) granite core sample and (b) gneiss core sample.

JOHGB2_2019_v52n2_189_f0004.png 이미지

Fig. 4. Separation by dip angle of joint (yellow line : 60-90°, azure line : 30-60°, red line : 0-30°, blue line : sealed fracture).

JOHGB2_2019_v52n2_189_f0005.png 이미지

Fig. 5. Picture of calcite crystal in open fracture (in red circle).

JOHGB2_2019_v52n2_189_f0006.png 이미지

Fig. 6. SEM picture of pyrite and calcite crystal in open fracture.

JOHGB2_2019_v52n2_189_f0007.png 이미지

Fig. 7. Distribution of sealed and open fractures by depth for granite sample.

JOHGB2_2019_v52n2_189_f0008.png 이미지

Fig. 8. Distribution of sealed and open fractures by depth for gneiss sample.

JOHGB2_2019_v52n2_189_f0009.png 이미지

Fig. 9. Cumulation distribution of sealed and open fractured by depth for granite sample.

JOHGB2_2019_v52n2_189_f0010.png 이미지

Fig. 10. Cumulation distribution of sealed and open fractured by depth for gneiss sample.

JOHGB2_2019_v52n2_189_f0011.png 이미지

Fig. 11. Distribution of dip angle of open fracture by depth for granite sample.

JOHGB2_2019_v52n2_189_f0012.png 이미지

Fig. 12. Distribution of dip angle of open fracture by depth for gneiss sample.

References

  1. Chang, K.-H., Kho, I.-S., Park, H.-I., Chi, J.-M. and Kim, H.-M. (1978) 1:50,000 Explanatory Text of The Geological Map of Cheonji Sheet, Korea Research Institute of Geoscience and Mineral Resources, 20p. (in Korean with English abstract)
  2. Jo, H.-J., Cheong, A.C.S., Yi, K. and Li, X.-H. (2018) Juxtaposition of Allochthonous Terranes in the Central Korean Peninsula: Evidence from zircon U-Pb ages and O-Hf isotopes in Jurassic granitoids. Chem. Geol., v.484, p.136-147. https://doi.org/10.1016/j.chemgeo.2017.10.006
  3. Kim, G.-Y., Go, K.-K., Bae, D.-S. and Kim, C.-S. (2004) Mineralogical Characteristics of Fracture-Filling Minerals from the Deep Borehole in the Yuseong Area for the Radioactive Waste Disposal Project. J. Miner. Soc. Korea, v.17, No.1, p.99-114. (in Korean with English abstract)
  4. Kim, J., Yi, K., Jeong, Y.-J. and Cheong, C.-S. (2011). Geochronological and Geochemical Constraints on the Petrogenesis of Mesozoic high-K Granitoids in the Central Korean Peninsula. Gondwana Res., v.20, No.2, p.608-620. https://doi.org/10.1016/j.gr.2010.12.005
  5. Kim, N.-J. and Lee, H.-K. (1970) 1:50,000 Explanatory Text of The Geological Map of Jungpyeong Dong Sheet, Korea Research Institute of Geoscience and Mineral Resources, 19p. (in Korean with English abstract)
  6. Lee, S.-Y., Baik, M.-H., Cho., W.-J. and Hahn, P.-S. (2006) Rock Weathering and Geochemical Characteristics in the KURT. J. Kor. Rad. Waste Soc., v.4, No.4, p.321-328. (in Korean with English abstract)
  7. Martel, S. (2017) Progress in understanding sheeting joints over the past two centuries. J. Struct. Geol., v.94, 68-86. https://doi.org/10.1016/j.jsg.2016.11.003
  8. McEwen, T., Aro, S., Kosunen, P.,Mattila, J., Pere, T., Kapyaho, A. and Hella, P. (2013) Rock Suitability Classification RSC 2012. Posiva Report 2012-24.
  9. NUMO (Nuclear Waste Management Organization of Japan). (2002) Siting Factors for the Selection of Preliminary Investigation Areas, MWMO Report, Tokyo, 22p.
  10. NUMO (Nuclear Waste Management Organization of Japan). (2004) Evaluating Site Suitability for a HLW Repository, NUMO-TR-04-04, Tokyo, p.2-9.
  11. Nishimoto, S. and Yoshida, H. (2010) Hydrothermal Alteration of Deep Fractured Granite: Effects of Dissolution and Precipitation. Lithos, v.115, p.153-162. https://doi.org/10.1016/j.lithos.2009.11.015
  12. Ono, T., Yoshida, H. and Metcalfe, R. (2016) Use of fracture Filling Mineral Assemblages for Characterizing Water rock Interactions during Exhumation of an Accretionary Complex: an Example from the Shimanto Belt, southern Kyushu Japan. J. Struct. Geol., v.87, p.81-94. https://doi.org/10.1016/j.jsg.2016.04.009
  13. Park, H.-I., Lee, J.-D. and Cheong, J.-G. (1968) 1:50,000 Explanatory Text of The Geological Map of Yuseong Sheet, Korea Research Institute of Geoscience and Mineral Resources, 21p. (in Korean with English abstract)
  14. Pere, T., Aro, S., Mattila, J., Ahokas, H., Vaittinen, T. and Wikstrom, L. (2012) Layout Determining Features, their Influence Zones and Respect Distances at the Olkiluoto Site. In: Pere, T. (Ed.), Posiva Report POSIVA, p.2012-2021
  15. Pine, R.J., Coggan, J.S., Flynn, Z.N. and Elmo, D. (2006) The Development of a New Numerical Modelling Approach for Naturally Fractured Rock Masses. Rock Mech. Rock Engng., v.39, No.5, p.395-419. https://doi.org/10.1007/s00603-006-0083-x
  16. Yoshida, H., Metcalfe, R., Ishibashi, M. and Minami, M. (2013) Long-term Stability of Fracture Systems and Their Behaviour as Flow Paths in Uplifting Granitic Rock from the Japanese Orogenic Field. Geofluids, v.13, p.45-55. https://doi.org/10.1111/gfl.12008
  17. Yoshida, H., Nagatomo, A., Oshima, A. and Metcalfe, R. (2014) Geological Characterisation of the Active Atera Fault in Central Japan: Implications for Defining Fault Exclusion Criteria in Crystalline Rocks around Radioactive Waste Repositories. Eng. Geol., v.177, p.93-103. https://doi.org/10.1016/j.enggeo.2014.05.008