• Title/Summary/Keyword: waste reduction

Search Result 1,089, Processing Time 0.024 seconds

Low-grade waste heat recovery and repurposing to reduce the load on cooling towers

  • McLean, Shannon H.;Chenier, Jeff;Muinonen, Sari;Laamanen, Corey A.;Scott, John A.
    • Advances in Energy Research
    • /
    • v.7 no.2
    • /
    • pp.147-166
    • /
    • 2020
  • Industrial cooling towers are often ageing infrastructure that is expensive to maintain and operate. A novel approach is introduced in which a heat pump circuit is incorporated to reduce the load upon the towers by extracting low-grade energy from the stream sent to the towers and repurposing in on-site processing operations. To demonstrate the concept, a model was constructed, which uses industrial data on cooling towers linked to a smelter's sulphuric acid plant, to allow direct economic and environmental impact comparison between different heat recovery and repurposing scenarios. The model's results showed that implementing a heat pump system would significantly decrease annual operating costs and achieve a payback period of 3 years. In addition, overall CO2 emissions could be reduced by 42% (430,000 kg/year) and a 5% heat load reduction on the cooling towers achieved. The concept is significant as the outcomes introduce a new way for energy intensive industrial sectors, such as mineral processing, to reduce energy consumption and improve long-term sustainable performance.

Patterning self-assembled pentacene nanolayer by EUV-induced 3-dimensional polymerization

  • Hwang, Han-Na;Han, Jin-Hui;Im, Jun;Sin, Hyeon-Jun;Kim, Yeong-Deuk;Hwang, Chan-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.65-65
    • /
    • 2010
  • Extreme ultraviolet lithography (EUVL) is expected to be applied for making patterns below 32 nm in device industry. An ultrathin EUV photoresist (PR) of a few nm in thickness is required to reduce minimum feature size further. Here, we show that pentacene molecular layers can be employed as a new EUV resist for the first time. Dots and lines in nm scale are successfully realized using the new molecular resist. We clearly provide the mechanism for forming the nanopatterns with scanning photoemission microscope (SPEM), EUV interference lithography (EUV-IL), atomic force microscope (AFM), photoemission spectroscopy (PES), etc. The molecular PR has several advantages over traditional polymer EUV PRs; for example, high thermal/chemical stability, negligible outgassing, ability to control the height and width on the nanometer scale, leaving fewer residuals, no need for a chemical development process and thus reduction of chemical waste to make the nanopatterns. Besides, it could be applied to any substrate to which pentacene bonds chemically, such as $SiO_2$, SiN, and SiON, which is of importance in the device industry.

  • PDF

High-pressure Air Impulse Technique for Rehabilitating Well and Its Application to a Riverbank Filtration Site in Korea

  • Jeon, Hang-Tak;Hamm, Se-Yeong;Cheong, Jae-Yeol;Han, Suk-Jong;Yun, Sul-Min
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.887-898
    • /
    • 2019
  • Rehabilitation work is required to increase well productivity, which decreases with the elapsed time of pumping owing to the clogging of the water well. Clogging causes not only a reduction in the well productivity but also a deterioration of the water quality. For unclogging and rehabilitating wells, several techniques are used such as brushing, air surging, surge blocks, and gas impulse. In this study, the high-pressure air impulse technique, which effectively and economically rehabilitates wells, was applied to a riverbank filtration site in Korea for the same objective. At most of the wells, the hydraulic parameters (transmissivity, storage coefficient, and specific capacity) were increased by the application of the high-pressure air impulse technique. The well loss change values also indicate an increase in the hydraulic parameters by the air impulse implementation. Thus, the high-pressure air impulse technique can be efficiently and economically applied to water and riverbank filtration wells for rehabilitating the decreased productivity.

Development of Copper and Copper Oxide Removal Technology Using Supercritical CO2 and Hexane for Silicon Solar Cell Recycling (실리콘 태양전지 재자원화를 위한 초임계 CO2 및 헥산을 이용한 구리 및 산화구리 제거기술 개발)

  • Lee, Hyo Seok;Cho, Jae Yu;Heo, Jaeyeong
    • Current Photovoltaic Research
    • /
    • v.7 no.1
    • /
    • pp.21-27
    • /
    • 2019
  • Lifetime of Si photovoltaics modules are about 25 years and a large amount of waste modules are expected to be discharged in the near future. Therefore, the extraction and collection of valuable metals out of discharged Si modules will be one of the important technologies. In this study, we demonstrated that supercritical $CO_2$ extraction method can be effectively used to remove Cu, one of the abundant elements in the module, as well as its oxide form, $Cu_2O$. Especially, we proved that the addition of hexane as co-solvent is effective for the removal of both materials. The optimal ratio of $CO_2$ and hexane was 4:1 at a fixed temperature and pressure of $250^{\circ}C$ and 250 bar, respectively. In addition, it was proven that the removal of $Cu_2O$ was preceded via reduction of $Cu_2O$ to Cu.

Filter Contribution Recycle: Boosting Model Pruning with Small Norm Filters

  • Chen, Zehong;Xie, Zhonghua;Wang, Zhen;Xu, Tao;Zhang, Zhengrui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3507-3522
    • /
    • 2022
  • Model pruning methods have attracted huge attention owing to the increasing demand of deploying models on low-resource devices recently. Most existing methods use the weight norm of filters to represent their importance, and discard the ones with small value directly to achieve the pruning target, which ignores the contribution of the small norm filters. This is not only results in filter contribution waste, but also gives comparable performance to training with the random initialized weights [1]. In this paper, we point out that the small norm filters can harm the performance of the pruned model greatly, if they are discarded directly. Therefore, we propose a novel filter contribution recycle (FCR) method for structured model pruning to resolve the fore-mentioned problem. FCR collects and reassembles contribution from the small norm filters to obtain a mixed contribution collector, and then assigns the reassembled contribution to other filters with higher probability to be preserved. To achieve the target FLOPs, FCR also adopts a weight decay strategy for the small norm filters. To explore the effectiveness of our approach, extensive experiments are conducted on ImageNet2012 and CIFAR-10 datasets, and superior results are reported when comparing with other methods under the same or even more FLOPs reduction. In addition, our method is flexible to be combined with other different pruning criterions.

An Attitude about Reduction of Environmental Pollution and School Lunch Leftovers in Middle School Students (중학생의 환경오염과 학교급식 음식물쓰레기 감량에 대한 태도)

  • Choi, Myung-Yoon;Han, Myung-Joo
    • Journal of the Korean Society of Food Culture
    • /
    • v.24 no.2
    • /
    • pp.164-171
    • /
    • 2009
  • The objectives of this study were to determine the recognition of food waste, school lunch leftovers and satisfaction toward school lunch in middle school students in Seoul. Four hundred students were surveyed beginning April, 2007. The results are summarized as follows. The primary means in which students learned about environmental pollution were 'video media' (54.7% males, 39.2% females) and 'by teachers' (23.2% males, 33.0% females). The primary effects on food habits after participating in the school lunch program were 'having a balanced diet' (23.3%) in the females, and 'decreased intake of junk food' (24.9%) in the males. The serving sizes for cooked rice, soup, and meat were higher in the females (3.46, 3.46, and 2,91, respectively) than the males (3.18, 3.29, and 2.73, respectively). The primary school lunch leftovers for one week were cooked rice (4.55), meat (4.35), kimchi (3.84), fish (3.60), vegetables (3.38), and soup (3.08). Importance-performance analysis of the school lunch meal indicated that good taste had high importance, but low performance. Nutritional balance, food safety, cleanliness of tableware and supplies, clean uniforms of employees, and cleanliness of the dining area had both high importance and performance.

How to Apply Smart Tourism Characteristics to Hotel Management

  • Soo-Hee LEE
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.12 no.2
    • /
    • pp.35-42
    • /
    • 2024
  • Purpose: With the growth of the hospitality industry, it is imperative to identify how smart tourism characteristics may be used in hotel management. Current and emerging technologies such as analytic tools, automation, and Artificial Intelligence (AI) help to create value for the guests while also contributing to waste reduction, resource optimization, and increased profitability in the industry. Research design, data and methodology: The literature review was conducted to examine a broad scope of research in analyzing smart tourism characteristics for the improved management of hotels and establish the necessary background for this issue. The analysis was employed to specify the systematic approach of selecting, scrutinizing, and integrating the source of information. Results: According to the systematic literature analysis, four smart tourism characteristics have been established, which can improve various aspects of hotel management. They are as follows: (1) Smart Guest Experience Management, (2) Smart Operations and Resource Management, (3) Smart Customer Relationship Management, and (4) Smart Destination Management. Conclusions: The findings expose the radical approach that smart tourism characteristics take towards the management of hotels. The developments in IT and science-oriented solutions have opened greater opportunities as the hotel industry can enhance clients' satisfaction, productivity, and participation in environmental conservation initiatives for tourism.

A Study on the Optimal Method of Eco-Friendly Recycling through the Comparative Analysis of the Quantitative Calculation and Scope of Recycling

  • Seung-jun WOO;Eun-gyu LEE;Chul-hyun NAM;Kang-hyuk LEE;Woo-Taeg KWON;Hee-Sang YU
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.7 no.3
    • /
    • pp.1-11
    • /
    • 2024
  • Purpose: The purpose of this study is to present an efficient emission reduction ratio of plastic to reduce carbon dioxide, the main cause of greenhouse gases. Research design, data and methodology: This study calculated the absolute value of carbon dioxide by setting an equation through the emission coefficient using the US EPA's WARM model. Results: In the recycling ratio of 70%, it was found that the energy recovery ratio was 15.6%, which was the energy recovery ratio without generating carbon dioxide. When carbon dioxide is generated by changing plastic waste emissions, optimal efficiency is achieved by reducing emissions by 10% to 30% of energy recovery ratio, 20% to 50% of energy recovery ratio, and 30% to 80% or more of energy recovery ratio. Conclusions: The recycling rate should be set at a minimum of 70%, so that a carbon dioxide-free energy recovery rate could be obtained during the recycling process, supporting an eco-friendly basis for environmental policies aimed at this rate. In addition, it was possible to suggest that it is essential to reduce emissions by at least 30% for eco-friendly recycling measures that can achieve both economic and environmental feasibility in the energy recovery process through incineration during recycling in Korea.

Dewaterability Improvement and Volume Reduction of Bio-Solid using Ultrasonic Treatment (Bio-Solid의 탈수성 개선 및 감량화를 위한 초음파 적용)

  • Park, Cheol;Ha, Jun Soo;Kim, Young Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.4019-4023
    • /
    • 2014
  • This study examined the effectiveness of ultrasound on enhancing the dewaterability and volume reduction of bio solids from a waste treatment plant. The test specimen was obtained from a storage tank immediately before the dewatering process at a local treatment plant. The test conditions included the energy levels of ultrasonic waves and treatment time. The tests were undertaken using three types of different treatment processors (7 liter, 1 ton, 7 ton container). The capillary suction time (CST) and the viscosity of sludge, which is one of the influencing factors for dewaterbility, were obtained under various test conditions. The results showed that ultrasound increases the CST of the raw specimens, whereas a significant reduction (20 % of the maximum value) of CST occurred in the sample with ultrasound and flocculent. The decrease in viscosity reached 40 % of the maximum value. A centrifugal test was performed to examine the characteristics of the sludge settlement. The settling rate and time required to reach the final values were both enhanced by the ultrasonic energy. An ultrasonic treatment is potentially useful tool for reducing the amount of released sludge. To examine the possible use of field application, the real scale sonic processor was designed and operated. The results were similar (50 % of the maximum value) to those of laboratory experiments.

Reduction of pH of Recycled Fine Aggregate due to Natural and Artificial Treatment Method (자연 및 인위적 처리방법 변화에 따른 순환잔골재의 pH저감)

  • Han, Cheon-Goo;Han, Min-Cheol;Han, Sang-Yoon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.103-110
    • /
    • 2011
  • This study is to comparatively analyze the characteristics of pH decrease in recycled fine aggregates for embankment and landfill produced from waste concrete by using natural process and artificial process. The result was as follows In case of recycled fine aggregates left outdoor, it was found that pH level was decreased if the thickness of embankment becomes thinner, or the materials left outdoors owing to high concentration of $CO_2$ in atmosphere caused by respirations of people. When the air was permeated, pH level was decreased more effectively. It was analyzed that this phenomenon was caused by efficient supply of $CO_2$ in the recycled fine aggregates owing to high-pressure ventilators. In case of water spraying treatment, sprayed water facilitated hydration of unhydrated cement to dissolve calcium hydroxides which neutralized $CO_2$ in the atmosphere during desiccation process and decrease pH level by a considerable margin. In case of Immersed treatment, decrease of pH was not sufficient. When facilitating the supply of $CO_2$, pH level of the recycled fine aggregates was decreased by the largest margin. It was analyzed that this phenomenon was caused by efficient supply of $CO_2$. From the above results, it was analyzed that the most effective method of reducing pH level of the recycled fine aggregates from the aspects of pH reduction performance, economic efficiency and workability was repeated wet-dry cycles of spraying water to the aggregates in the proportion of 1:0.5 by weight and then treating by forcefully blowing $CO_2$ gas into the aggregates.

  • PDF